• 分治 FFT学习笔记


    先给一道luogu板子题:P4721 【模板】分治 FFT


    今天模拟有道题的部分分做法是分治fft,于是就学了一下。感觉不是很难,国赛上如果推出式子的话应该能写出来。


    分治fft用来解决这么一个式子$$f(i) = sum _ {j = 1} ^ {i} f(j) * g(i - j)$$
    如果暴力fft的话,复杂度(O(n ^ 2logn))还没有暴力优秀。


    我们可以用cdq分治的思想,对于区间([L, R]),假设([L, mid])已经求出,现在要算([mid + 1, R])
    那么我们考虑对于([mid + 1, R])中的某一项(x),前面([L, mid])对他的贡献:$$f(x) = sum _{i = L} ^ {mid} f(i) * g(x - i)$$
    为了方便,我们把循环到(mid)改为(x),反正(mid)~(x)这些项还没有被计算,暂且为0。于是有

    [egin{align*} f(x) &= sum _ {i = L} ^ {x} f(i)* g(x - i) \ &= sum _ {i = 0} ^ {x - L} f(i + L) * g(x - L - i) end{align*}]

    我们令(A(i) = f(i + L), B(i) = g(i)),于是式子就变成了$$f(x) = C(x - L) = sum _ {i = 0} ^{x - L} A(i) *B(x - L - i)$$
    这个时候能看出后面是一个卷积的形式,直接FFT即可。然后把(C(x - L))加到(f(x))上,左边对右边的贡献就算完了。再递归右边。


    递归的每一层是(O(len log len))的(区间长度),有(logn)层,因此总时间复杂度为(O(nlog ^ 2n))

    #include<cstdio>
    #include<iostream>
    #include<cmath>
    #include<algorithm>
    #include<cstring>
    #include<cstdlib>
    #include<cctype>
    #include<vector>
    #include<queue>
    #include<assert.h>
    #include<ctime>
    using namespace std;
    #define enter puts("") 
    #define space putchar(' ')
    #define Mem(a, x) memset(a, x, sizeof(a))
    #define In inline
    #define forE(i, x, y) for(int i = head[x], y; ~i && (y = e[i].to); i = e[i].nxt)
    typedef long long ll;
    typedef double db;
    const int INF = 0x3f3f3f3f;
    const db eps = 1e-8;
    const int maxn = 3e5 + 5;
    const ll mod = 998244353;
    const ll G = 3;
    inline ll read()
    {
    	ll ans = 0;
    	char ch = getchar(), last = ' ';
    	while(!isdigit(ch)) last = ch, ch = getchar();
    	while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
    	if(last == '-') ans = -ans;
    	return ans;
    }
    inline void write(ll x)
    {
    	if(x < 0) x = -x, putchar('-');
    	if(x >= 10) write(x / 10);
    	putchar(x % 10 + '0');
    }
    In void MYFILE()
    {
    #ifndef mrclr
    	freopen("ha.in", "r", stdin);
    	freopen("ha.out", "w", stdout);
    #endif
    }
    
    int n;
    ll f[maxn], g[maxn];
    
    In ll inc(ll a, ll b) {return a + b < mod ? a + b : a + b - mod;}
    In ll quickpow(ll a, ll b)
    {
    	ll ret = 1;
    	for(; b; b >>= 1, a = a * a % mod)
    		if(b & 1) ret = ret * a % mod;
    	return ret;
    }
    
    int rev[maxn];
    ll A[maxn], B[maxn];
    In void ntt(ll* a, int len, bool flg)
    {
    	for(int i = 0; i < len; ++i) if(i > rev[i]) swap(a[i], a[rev[i]]);
    	for(int i = 1; i < len; i <<= 1)
    	{
    		ll gn = quickpow(G, (mod - 1) / (i << 1));
    		for(int j = 0; j < len; j += (i << 1))
    		{
    			ll g = 1;
    			for(int k = 0; k < i; ++k, g = g * gn % mod)
    			{
    				ll tp1 = a[j + k], tp2 = a[j + k + i] * g % mod;
    				a[j + k] = inc(tp1, tp2), a[j + k + i] = inc(tp1, mod - tp2);
    			}
    		}
    	}
    	if(flg) return;
    	reverse(a + 1, a + len); ll inv = quickpow(len, mod - 2);
    	for(int i = 0; i < len; ++i) a[i] = a[i] * inv % mod;
    }
    
    In void fftSolve(int L, int R)
    {
    	if(L == R) return;
    	int mid = (L + R) >> 1;
    	fftSolve(L, mid);
    	int n = R - L + 1, len = 1, lim = 0;
    	while(len <= n + n) len <<= 1, ++lim;
    	for(int i = 0; i < len; ++i) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (lim - 1));
    	fill(A, A + len, 0), fill(B, B + len, 0);
    	for(int i = L; i <= mid; ++i) A[i - L] = f[i];
    	for(int i = 0; i < n; ++i) B[i] = g[i];
    	ntt(A, len, 1), ntt(B, len, 1);
    	for(int i = 0; i < len; ++i) A[i] = A[i] * B[i] % mod;
    	ntt(A, len, 0);
    	for(int i = mid + 1; i <= R; ++i) f[i] = inc(f[i], A[i - L]);
    	fftSolve(mid + 1, R);
    }
    
    int main()
    {
    //	MYFILE();
    	n = read();
    	for(int i = 1; i < n; ++i) g[i] = read();
    	f[0] = 1, fftSolve(0, n - 1);
    	for(int i = 0; i < n; ++i) write(f[i]), space; enter;
    	return 0;	
    }
    
  • 相关阅读:
    SWFObject2.0
    年轻人买房的问题
    百度知道的php爬虫
    PHP解决多进程同时读写一个…
    php快速定位多维数组的深度
    不要用充实的借口去浪费时间
    php跨服务器信息获取之cURL
    为你的生命多积累一些厚度
    看完一定让你很受益!
    phpQuery轻松采集网页内容
  • 原文地址:https://www.cnblogs.com/mrclr/p/11066307.html
Copyright © 2020-2023  润新知