嘟嘟嘟
这道题的切入点在于模型的转化。
令第(Lab)条边连接的两个点分别为(x, y)。根据kruskal算法,我们排完序加边的时候,在执行第(Lab)条边之前,都要保证(x, y)不连通。这就很像最小割了。
所以我们把边权小于(w_{Lab})的都拿来建图,那边权是啥咧?题中说的除了一条边其余的都减1,那不就相当于这条边自己加1了嘛。那么为了让图不连通,只需让每一条边的容量为(w_{lab} - w_i + 1)即可。
#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
#define enter puts("")
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define In inline
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-8;
const int maxn = 505;
const int maxm = 805;
inline ll read()
{
ll ans = 0;
char ch = getchar(), last = ' ';
while(!isdigit(ch)) last = ch, ch = getchar();
while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
if(last == '-') ans = -ans;
return ans;
}
inline void write(ll x)
{
if(x < 0) x = -x, putchar('-');
if(x >= 10) write(x / 10);
putchar(x % 10 + '0');
}
int n, m, t, id;
struct Node
{
int x, y, w;
}q[maxm];
struct Edge
{
int nxt, from, to, cap, flow;
}e[maxm << 2];
int head[maxn], ecnt = -1;
In void addEdge(int x, int y, int w)
{
e[++ecnt] = (Edge){head[x], x, y, w, 0};
head[x] = ecnt;
e[++ecnt] = (Edge){head[y], y, x, 0, 0};
head[y] = ecnt;
}
int dis[maxn];
In bool bfs()
{
Mem(dis, 0); dis[0] = 1;
queue<int> q; q.push(0);
while(!q.empty())
{
int now = q.front(); q.pop();
for(int i = head[now], v; i != -1; i = e[i].nxt)
{
if(!dis[v = e[i].to] && e[i].cap > e[i].flow)
dis[v] = dis[now] + 1, q.push(v);
}
}
return dis[t];
}
int cur[maxn];
In int dfs(int now, int res)
{
if(now == t || res == 0) return res;
int flow = 0, f;
for(int& i = cur[now], v; i != -1; i = e[i].nxt)
{
v = e[i].to;
if(dis[v] == dis[now] + 1 && (f = dfs(v, min(res, e[i].cap - e[i].flow))) > 0)
{
e[i].flow += f; e[i ^ 1].flow -= f;
flow += f; res -= f;
if(res == 0) break;
}
}
return flow;
}
In int minCut()
{
int flow = 0;
while(bfs())
{
memcpy(cur, head, sizeof(head));
flow += dfs(0, INF);
}
return flow;
}
int main()
{
Mem(head, -1);
n = read(), m = read(), id = read(); t = n + 1;
for(int i = 1; i <= m; ++i) q[i].x = read(), q[i].y = read(), q[i].w = read();
for(int i = 1; i <= m; ++i)
if(q[i].w <= q[id].w && i != id)
{
addEdge(q[i].x, q[i].y, q[id].w - q[i].w + 1);
addEdge(q[i].y, q[i].x, q[id].w - q[i].w + 1);
}
addEdge(0, q[id].x, INF), addEdge(q[id].y, t, INF);
write(minCut()), enter;
return 0;
}