• [十二省联考2019]D1T2字符串问题


    嘟嘟嘟


    省选Day1真是重大失误,T2连暴力都没时间写。
    上周五重新答了遍Day1,竟然搞了187分吼吼吼吼。
    T2按40分写的暴力,结果竟然得了60分。


    稍微说一下暴力吧:预处理哈希,对于一组支配关系(A_i), (B_i),用哈希判断(B_i)是哪些(A)串的前缀,是的话就连边((A_i, A_j))。用哈希能做到单次(O(n)),因此建图复杂度(O(n ^ 2))
    然后就是判无环后拓扑排序了。
    暴力代码我会在最下面放!


    接着讲正解。
    从暴力能看出来,瓶颈在于建图,一是挨个判前缀时间不够,二是挨个建边空间不够。
    为了解决这些,我们需要强力的字符串数据结构,比如SAM(我不会SA)。


    首先把原串反过来建SAM,并记录每一个位置在后缀树(我才知道到由link构成的树就是后缀树)上对应的节点。
    然后对于每一个(A)(B)串,倍增找到后缀树上的所属的节点,开一个vector存下来。
    我们要做的,就是对于所有(B_i),如果是(A_j)的后缀(因为反过来了),就向(A_j)连边,这样如果(A_i)支配(B_i),只需从(A_i)(B_i)连边,图就建好了。
    支配的话直接连就好了,而(B_i)向所有(A_j)连边,其实就是(B_i)向他的子树里的所有(A_j)连边,但这样一条条连固然不行,观察到这些(A_j)的dfs序是连续的,所以可以线段树优化建图,这就是伟大的学姐写的。
    其实也不用。只要每一个点向他的孩子连边就行了,这样虽然不是直接连边,但肯定能保证(B_i)能到(A_j)
    这个虽然解决了,但还有一件事没有解决。
    就是后缀树上的每一个点可能有多个(A)(B)串(不然开vector干嘛),因此上述连边会让编号弄混,分不清到底向哪一个串连边。
    所以我们先把每一个vector按长度为第一关键字,是否为(A)类串为第二关键字排序,然后把后缀树上的点拆点,在一个节点内,如果有(A_1, A_2, A_3, B_1, B_2)这几个串,且长度上满足(l_{B_1} > l_{A_1} > l_{A_2} > l_{B_2} > l _ {A_3}),那么我们就这么建图:

    其中(i)表示后缀树上这个结点的编号,(j)(i)的孩子结点。
    然后我们就可以愉快的跑拓扑排序啦,注意到图上只有(A)类点是我们需要的,因此把别的点的权值清零,就不会干扰(A)类点统计答案了。

    #include<cstdio>
    #include<iostream>
    #include<cmath>
    #include<algorithm>
    #include<cstring>
    #include<cstdlib>
    #include<cctype>
    #include<vector>
    #include<stack>
    #include<queue>
    using namespace std;
    #define enter puts("") 
    #define space putchar(' ')
    #define Mem(a, x) memset(a, x, sizeof(a))
    #define In inline
    typedef long long ll;
    typedef double db;
    const int INF = 0x3f3f3f3f;
    const db eps = 1e-8;
    const int maxn = 2e5 + 5;
    const int maxe = 2e6 + 5;
    const int N = 18;
    inline ll read()
    {
      	ll ans = 0;
      	char ch = getchar(), last = ' ';
      	while(!isdigit(ch)) last = ch, ch = getchar();
      	while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
      	if(last == '-') ans = -ans;
      	return ans;
    }
    inline void write(ll x)
    {
      	if(x < 0) x = -x, putchar('-');
      	if(x >= 10) write(x / 10);
      	putchar(x % 10 + '0');
    }
    
    char s[maxn];
    int n, m, na, nb;
    
    int fa[N + 2][maxn << 1];
    int tra[maxn << 1][27], link[maxn << 1], len[maxn << 2], id[maxn], las = 1, cnt = 1;
    In void insert(int c)
    {
      	int now = ++cnt, p = las;
      	len[now] = len[las] + 1;
      	while(p && !tra[p][c]) tra[p][c] = now, p = link[p];
      	if(!p) link[now] = 1;
      	else
        {
          	int q = tra[p][c];
          	if(len[q] == len[p] + 1) link[now] = q;
          	else
    		{
    		  	int clo = ++cnt;
    		  	memcpy(tra[clo], tra[q], sizeof(tra[q]));
    		  	len[clo] = len[p] + 1;
    		  	link[clo] = link[q]; link[q] = link[now] = clo;
    		  	while(p && tra[p][c] == q) tra[p][c] = clo, p = link[p];
    		}
        }
      	las = now;
    }
    
    int Siz = 0, isa[maxn << 2], lst[maxn << 2];
    int a[maxn], b[maxn];
    vector<int> v[maxn << 2];
    In void solve(const int& flg)
    {
      	int L = read(), R = read();
      	int Len = R - L + 1, x = id[L];
      	for(int i = N; i >= 0; --i)
        	if(fa[i][x] && len[fa[i][x]] >= Len) x = fa[i][x];
      	isa[++Siz] = flg, len[Siz] = Len, v[x].push_back(Siz);
    }
    
    In bool cmp(const int& a, const int& b)
    {
      	return len[a] > len[b] || (len[a] == len[b] && isa[a] > isa[b]);
    }
    
    struct Edge
    {
      	int nxt, to;
    }e[maxe];
    int head[maxn << 2], ecnt = -1, du[maxn << 2];
    In void addEdge(const int& x, const int& y)
    {
      	++du[y];
      	e[++ecnt] = (Edge){head[x], y};
      	head[x] = ecnt;
    }
    
    ll dp[maxn << 2];
    In ll topo()
    {
      	queue<int> q; ll ret = 0;
      	for(int i = 1; i <= Siz; ++i) if(!du[i]) q.push(i), dp[i] = len[i];
      	while(!q.empty())
        {
          	int now = q.front(); q.pop();
          	ret = max(ret, dp[now]);
          	for(int i = head[now], v; ~i; i = e[i].nxt)
    		{
    	  		v = e[i].to;
    	  		dp[v] = max(dp[v], dp[now] + len[v]);
    	  		if(!--du[v]) q.push(v);
    		}
        }
      	for(int i = 1; i <= Siz; ++i) if(du[i]) return -1;
      	return ret;
    }
    
    In void clear()
    {
      	for(int i = 1; i <= cnt; ++i) link[i] = 0, Mem(tra[i], 0);
      	ecnt = -1; las = cnt = 1;
      	for(int i = 1; i <= Siz; ++i)
        {
          	v[i].clear(); head[i] = -1;
          	isa[i] = len[i] = dp[i] = du[i] = 0;
        }
    }
    
    int main()
    {
      	//freopen("ha.in", "r", stdin);
      	//freopen("ha.out", "w", stdout);
      	Mem(head, -1);
      	int T = read();
      	while(T--)
        {
          	scanf("%s", s + 1); n = strlen(s + 1);
          	for(int i = n; i; --i) insert(s[i] - 'a'), id[i] = las;
          	for(int i = 1; i <= cnt; ++i) fa[0][i] = link[i];
          	for(int j = 1; j <= N; ++j)
    			for(int i = 1; i <= cnt; ++i) fa[j][i] = fa[j - 1][fa[j - 1][i]];
          	Siz = cnt;
          	na = read();
          	for(int i = 1; i <= na; ++i) solve(1), a[i] = Siz;
          	nb = read();
          	for(int i = 1; i <= nb; ++i) solve(0), b[i] = Siz;
          	for(int i = 1; i <= cnt; ++i) sort(v[i].begin(), v[i].end(), cmp);
          	for(int i = 1; i <= cnt; ++i)
    		{
    	  		int last = i;
    	  		for(int j = v[i].size() - 1; j >= 0; --j)
    	    	{
    	      		addEdge(last, v[i][j]);
    	      		if(!isa[v[i][j]]) last = v[i][j];
    	    	}
    	  	lst[i] = last;
    		}
          	for(int i = 2; i <= cnt; ++i) addEdge(lst[link[i]], i);
          	for(int i = 1; i <= Siz; ++i) if(!isa[i]) len[i] = 0;
          	m = read();
          	for(int i = 1, x, y; i <= m; ++i) x = read(), y = read(), addEdge(a[x], b[y]);
          	write(topo()), enter;
          	clear();
        }
      	return 0;
    }
    

    然后还有我的优美的暴力代码啦啦啦。(判环的时候还特意写了个tarjan,其实不用,拓扑后看有没有入度不为0的点就行了,就像上面一样) ```c++ #include #include #include #include #include #include #include #include #include #include using namespace std; #define enter puts("") #define space putchar(' ') #define Mem(a, x) memset(a, x, sizeof(a)) #define In inline typedef long long ll; typedef unsigned long long ull; typedef double db; const int INF = 0x3f3f3f3f; const db eps = 1e-8; const ull bse = 998244353; const int maxn = 2e5 + 5; const int maxe = 1e7 + 5; inline ll read() { ll ans = 0; char ch = getchar(), last = ' '; while(!isdigit(ch)) last = ch, ch = getchar(); while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar(); if(last == '-') ans = -ans; return ans; } inline void write(ll x) { if(x < 0) x = -x, putchar('-'); if(x >= 10) write(x / 10); putchar(x % 10 + '0'); } In void MYFILE() { #ifndef mrclr freopen("string.in", "r", stdin); freopen("string.out", "w", stdout); #endif }

    char s[maxn];
    ull has[maxn], p[maxn];
    int n, m, na, nb, du[maxn];
    bool FLG = 1;
    struct Node
    {
    int L, R, len; ull h;
    }ta[maxn], tb[maxn];

    In ull calc_has(int L, int len)
    {
    return has[L + len - 1] - has[L - 1] * p[len];
    }

    struct Edge
    {
    int nxt, to;
    }e[maxe];
    int head[maxn], ecnt = -1;
    In void addEdge(int x, int y)
    {
    if(x == y) FLG = 0;
    e[++ecnt] = (Edge){head[x], y};
    head[x] = ecnt;
    }

    bool in[maxn];
    int st[maxn], top = 0;
    int dfn[maxn], low[maxn], cnt = 0;
    int num[maxn], ccol = 0;
    In void tarjan(int now)
    {
    dfn[now] = low[now] = ++cnt;
    st[++top] = now; in[now] = 1;
    for(int i = head[now], v; ~i; i = e[i].nxt)
    {
    if(!dfn[v = e[i].to])
    {
    tarjan(v);
    low[now] = min(low[now], low[v]);
    }
    else if(in[v]) low[now] = min(low[now], dfn[v]);
    }
    if(low[now] == dfn[now])
    {
    int x; ++ccol;
    do
    {
    x = st[top--]; in[x] = 0;
    ++num[ccol];
    }while(x ^ now);
    }
    }

    ll dis[maxn];
    In void topo()
    {
    queue q; q.push(0);
    for(int i = 1; i <= na; ++i) if(!du[i]) q.push(i), dis[i] = ta[i].len;
    while(!q.empty())
    {
    int now = q.front(); q.pop();
    for(int i = head[now], v; ~i; i = e[i].nxt)
    {
    v = e[i].to;
    dis[v] = max(dis[v], dis[now] + ta[v].len);
    if(!--du[v]) q.push(v);
    }
    }
    }

    In void init()
    {
    ecnt = -1, top = cnt = ccol = 0; FLG = 1;
    int Max = max(na, nb);
    for(int i = 0; i <= Max; ++i)
    du[i] = dfn[i] = low[i] = num[i] = dis[i] = in[i] = 0, head[i] = -1;
    }

    int main()
    {
    //MYFILE();
    Mem(head, -1);
    int T = read();
    while(T--)
    {
    scanf("%s", s + 1);
    n = strlen(s + 1); p[0] = 1;
    for(int i = 1; i <= n; ++i)
    {
    has[i] = has[i - 1] * bse + s[i];
    p[i] = p[i - 1] * bse;
    }
    na = read();
    for(int i = 1; i <= na; ++i)
    {
    int L = read(), R = read();
    ta[i] = (Node){L, R, R - L + 1, has[R] - has[L - 1] * p[R - L + 1]};
    }
    nb = read();
    for(int i = 1; i <= nb; ++i)
    {
    int L = read(), R = read();
    tb[i] = (Node){L, R, R - L + 1, has[R] - has[L - 1] * p[R - L + 1]};
    }
    init();
    m = read();
    for(int i = 1; i <= m; ++i)
    {
    int x = read(), y = read();
    for(int j = 1; j <= na && FLG; ++j)
    if(ta[j].len >= tb[y].len && calc_has(ta[j].L, tb[y].len) == tb[y].h)
    addEdge(x, j), ++du[j];
    }
    if(!FLG) {puts("-1"); continue;}
    bool flg = 1;
    for(int i = 1; i <= na; ++i) if(!dfn[i]) tarjan(i);
    for(int i = 1; i <= ccol && flg; ++i) if(num[i] > 1) flg = 0;
    if(!flg) {puts("-1"); continue;}
    topo();
    ll ans = 0;
    for(int i = 1; i <= na; ++i) ans = max(ans, dis[i]);
    write(ans), enter;
    }
    return 0;
    }

  • 相关阅读:
    如何保证service不被系统杀死
    查找算法
    java多线程学习
    设计模式-单例
    Python2.7-内置类型
    Python2.7-内置函数
    准备要学的东西
    Python-2.7 : 编码问题及encode与decode
    【JZOJ4637】大鱼海棠【博弈论】
    【JZOJ4637】大鱼海棠【博弈论】
  • 原文地址:https://www.cnblogs.com/mrclr/p/10786192.html
Copyright © 2020-2023  润新知