• [ZJOI2011]礼物


    嘟嘟嘟


    正是因为有这样的数据范围,解法才比较暴力。


    我们假设取出的长方体常和宽相等,即(a * a * b)。这样我们每次换两条边相等,搞三次就行。
    那么对于第(k)层中的第((i, j))((k, i, j)),求出以这个点为右下角的最大完好的正方形f[k][i][j]。这个可以用倍增求。所以复杂度为(O(n ^ 3 logn))
    然后(O(n ^ 2))枚举平面上的每一个点((x, y)),立体的就是每一竖条,那么对于每一竖条,我们要求的就是(max {(i - j + 1) * (min_{t = j} ^ {i} f[t][x][y]) })。这个求法就是poj 2559了,用单调递增栈(O(n))维护就行。这个的复杂度是(O(n ^ 3))的。
    所以总复杂度(O(n ^ 3 logn))

    #include<cstdio>
    #include<iostream>
    #include<cmath>
    #include<algorithm>
    #include<cstring>
    #include<cstdlib>
    #include<cctype>
    #include<vector>
    #include<stack>
    #include<queue>
    using namespace std;
    #define enter puts("") 
    #define space putchar(' ')
    #define Mem(a, x) memset(a, x, sizeof(a))
    #define In inline
    typedef long long ll;
    typedef double db;
    const int INF = 0x3f3f3f3f;
    const db eps = 1e-8;
    const int maxn = 155;
    inline ll read()
    {
      ll ans = 0;
      char ch = getchar(), last = ' ';
      while(!isdigit(ch)) last = ch, ch = getchar();
      while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
      if(last == '-') ans = -ans;
      return ans;
    }
    inline void write(ll x)
    {
      if(x < 0) x = -x, putchar('-');
      if(x >= 10) write(x / 10);
      putchar(x % 10 + '0');
    }
    
    int p, q, r;
    int _a[3][maxn][maxn][maxn], a[maxn][maxn][maxn];
    
    int sum[maxn][maxn][maxn], f[maxn][maxn][maxn];
    In int calc(int k, int i, int j)
    {
      int L = 1, R = min(i, j);
      while(L < R)
        {
          int mid = (L + R + 1) >> 1;
          int Sum = sum[k][i][j] - sum[k][i - mid][j] - sum[k][i][j - mid] + sum[k][i - mid][j - mid];
          if(!Sum) L = mid;
          else R = mid - 1;
        }
      return L;
    }
    struct Node
    {
      int num, len;
    }st[maxn];
    In int solve(int p, int q, int r)
    {
      for(int k = 1; k <= r; ++k)
        for(int i = 1; i <= p; ++i)
          for(int j = 1; j <= q; ++j)
    	{
    	  int tp = (a[k][i][j] == 'N' ? 0 : 1);
    	  sum[k][i][j] = sum[k][i - 1][j] + sum[k][i][j - 1] - sum[k][i - 1][j - 1] + tp;
    	}
      for(int k = 1; k <= r; ++k)
        for(int i = 1; i <= p; ++i)
          for(int j = 1; j <= q; ++j) f[k][i][j] = calc(k, i, j);
      int ret = 0, top = 0;
      for(int i = 1; i <= p; ++i)
        for(int j = 1; j <= q; ++j)
          {
    	top = 0; f[r + 1][i][j] = 0;
    	for(int k = 1; k <= r + 1; ++k)
    	  {
    	    if(!top || st[top].num < f[k][i][j]) st[++top] = (Node){f[k][i][j], 1};
    	    else
    	      {
    		int tp = 0;
    		while(top && st[top].num >= f[k][i][j])
    		  {
    		    ret = max(ret, st[top].num * (st[top].len + tp));
    		    tp += st[top--].len;
    		  }
    		st[++top] = (Node){f[k][i][j], tp + 1};
    	      }
    	  }
          }
      return ret;
    }
    
    char s[maxn];
    int main()
    {
      p = read(), q = read(), r = read();
      for(int j = 1; j <= q; ++j)
        for(int i = 1; i <= p; ++i)
          {
    	scanf("%s", s + 1);
    	for(int k = 1; k <= r; ++k) 
    	  _a[0][k][i][j] = _a[1][i][k][j] = _a[2][j][i][k] = s[k];
          }
      int ans = 0;
      memcpy(a, _a[0], sizeof(_a[0]));
      ans = max(ans, solve(p, q, r));
      memcpy(a, _a[1], sizeof(_a[1]));
      ans = max(ans, solve(r, q, p));
      memcpy(a, _a[2], sizeof(_a[2]));
      ans = max(ans, solve(p, r, q));
      write(ans << 2), enter;
      return 0;
    }
    
  • 相关阅读:
    Redis使用手册
    log4j.properties 输出指定类日志
    Maven中Jar包冲突,不让某个Jar包打入到工程中
    Cannot refer to the non-final local variable user defined in an enclosing scope
    PANIC: Missing emulator engine program for ‘x86’ CPU.
    Android studio 不能创建Activity等文件
    jenkins打maven包,出现Module Builds里面部分模块没有启动问题
    CentOS7 SFTP服务安装和使用
    记一次阿里云服务器被挖矿程序植入处理(简单记录下)
    利用阿里云高可用虚拟ip+keepalived+mha实现两台mysql的高可用
  • 原文地址:https://www.cnblogs.com/mrclr/p/10400084.html
Copyright © 2020-2023  润新知