嘟嘟嘟
首先瞎想可以知道,一定选相邻两个数之和最大的。这样后面的将军选和前面的前面的一样的勋章就行了。
不过如果(n)是奇数的话就会gg。然后考虑每一个勋章最多有(frac{n}{2})个人用,所以(lceil frac{sum a[i]}{frac{n}{2}}
ceil)个勋章一定够。
然后两者取max。
(只考虑第一种情况能对一半点 #滑稽)
#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
#define enter puts("")
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define In inline
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-8;
const int maxn = 2e4 + 5;
inline ll read()
{
ll ans = 0;
char ch = getchar(), last = ' ';
while(!isdigit(ch)) last = ch, ch = getchar();
while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
if(last == '-') ans = -ans;
return ans;
}
inline void write(ll x)
{
if(x < 0) x = -x, putchar('-');
if(x >= 10) write(x / 10);
putchar(x % 10 + '0');
}
int n, sum = 0, a[maxn];
int main()
{
n = read();
for(int i = 1; i <= n; ++i) a[i] = read(), sum += a[i];
a[n + 1] = a[1];
int ans = 0;
for(int i = 1; i <= n; ++i) if(a[i] + a[i + 1] > ans) ans = a[i] + a[i + 1];
write(max(ans, (sum + (n >> 1) - 1) / (n >> 1))), enter;
return 0;
}