嘟嘟嘟
看到这种区间问题和最大异或和,我刚开始想到可持久化trie(虽然我不会写)。
但是这道题给的是(b_i) XOR ((a_j + x_i)),好像搞不了。
不过大体思路跟普通的最大异或和还是比较像的:我们从高位向低位枚举,如果该位是(0),就看看有没有(1)。
假设第(i)位是(0),在第(i)位之前已经求得的答案是ans,那么我们希望得到的数是now = ans + (1 << i)。所以就要在[now - x, now - x + (1 << i) - 1]这个区间里查找是否存在(a_j),如果存在,说明这一位可以满足。
查找的时候用主席树就好了。
#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
#define enter puts("")
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define In inline
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-8;
const int maxn = 4e6 + 5;
const int maxN = 1e5;
inline ll read()
{
ll ans = 0;
char ch = getchar(), last = ' ';
while(!isdigit(ch)) {last = ch; ch = getchar();}
while(isdigit(ch)) {ans = (ans << 1) + (ans << 3) + ch - '0'; ch = getchar();}
if(last == '-') ans = -ans;
return ans;
}
inline void write(ll x)
{
if(x < 0) x = -x, putchar('-');
if(x >= 10) write(x / 10);
putchar(x % 10 + '0');
}
int n, m;
struct Tree
{
int ls, rs, sum;
}t[maxn];
int root[maxn], cnt = 0;
In void update(int old, int& now, int l, int r, int id)
{
t[now = ++cnt] = t[old];
++t[now].sum;
if(l == r) return;
int mid = (l + r) >> 1;
if(id <= mid) update(t[old].ls, t[now].ls, l, mid, id);
else update(t[old].rs, t[now].rs, mid + 1, r, id);
}
In int query(int old, int now, int l, int r, int L, int R)
{
if(l == L && r == R) return t[now].sum - t[old].sum;
int mid = (l + r) >> 1;
if(R <= mid) return query(t[old].ls, t[now].ls, l, mid, L, R);
else if(L > mid) return query(t[old].rs, t[now].rs, mid + 1, r, L, R);
else return query(t[old].ls, t[now].ls, l, mid, L, mid) + query(t[old].rs, t[now].rs, mid + 1, r, mid + 1, R);
}
In bool Find(int old, int now, int L, int R)
{
L = max(L, 0); R = min(R, maxN);
if(L > R) return 0;
return query(old, now, 0, maxN, L, R);
}
int main()
{
n = read(); m = read();
for(int i = 1, x; i <= n; ++i) x = read(), update(root[i - 1], root[i], 0, maxN, x);
for(int i = 1; i <= m; ++i)
{
int b = read(), x = read(), L = read(), R = read(), ans = 0;
for(int j = 17; j >= 0; --j)
{
int now = ans + ((1 ^ ((b >> j) & 1)) << j);
if(Find(root[L - 1], root[R], now - x, now - x + (1 << j) - 1)) ans = now;
else ans += (((b >> j) & 1) << j);
}
write(b ^ ans), enter;
}
return 0;
}