嘟嘟嘟
看到比值,就想到01分数规划,令(ans = frac{sum a_i}{sum l_i}),其中(l)表示长度,所以(l_i)都是(1)。
然后变一下型,得到(sum (a_i - ans) = 0)。这就是01分数规划的标准形式了。
所以我们按套路二分,每一次数组中的元素就是(a_i - mid),然后求最大连续和。
如果大于等于(0),说明(mid)小了,向右额分;否则向左二分。
求最大连续和的时候,因为要记录左右端点,所以用前缀和的方法求最方便。
预处理前缀和。枚举右端点,那么左端点自然要取最小的,这样才能使差最大,(O(n))扫一遍的时候一起维护。
总复杂度(O(n log n))
#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
#define enter puts("")
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define In inline
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-8;
const int maxn = 1e5 + 5;
inline ll read()
{
ll ans = 0;
char ch = getchar(), last = ' ';
while(!isdigit(ch)) {last = ch; ch = getchar();}
while(isdigit(ch)) {ans = (ans << 1) + (ans << 3) + ch - '0'; ch = getchar();}
if(last == '-') ans = -ans;
return ans;
}
inline void write(ll x)
{
if(x < 0) x = -x, putchar('-');
if(x >= 10) write(x / 10);
putchar(x % 10 + '0');
}
int n, len;
char s[maxn];
int id1, id2;
db sum[maxn];
bool judge(db x)
{
for(int i = 1; i <= n; ++i) sum[i] = sum[i - 1] + s[i] - '0' - x;
int pos = 0; db Max = -INF;
for(int i = len; i <= n; ++i)
{
if(sum[i - len] <= sum[pos] - eps) pos = i - len;
if(sum[i] - sum[pos] > Max + eps) id1 = pos + 1, id2 = i, Max = sum[i] - sum[pos];
}
return Max > -eps;
}
void solve()
{
db L = 0, R = 1;
while(R - L > eps)
{
db mid = (L + R) / 2;
if(judge(mid)) L = mid;
else R = mid;
}
judge(L + eps);
write(id1), space, write(id2), enter;
}
int main()
{
int T = read();
while(T--)
{
n = read(); len = read();
scanf("%s", s + 1);
solve();
}
return 0;
}