• [USACO08MAR]Land Acquisition


    嘟嘟嘟


    只要会决策单调性,这题就是练手的


    首先按矩形长排序,这样只用考虑宽了。
    然后很容易搞出dp方程

    [dp[i] = min _ {j = 0} ^ {i - 1} (dp[j] + x[i] * max_{k = j + 1} ^ {i} y[k]) ]

    找max可以用st表达到(O(1))
    打表发现决策单调。然后就是正常的优化了。
    二分的时候需要注意当前队列非空。要不然会像我一样,不开氧气AC,开了RE2个点。

    #include<cstdio>
    #include<iostream>
    #include<cmath>
    #include<algorithm>
    #include<cstring>
    #include<cstdlib>
    #include<cctype>
    #include<vector>
    #include<stack>
    #include<queue>
    using namespace std;
    #define enter puts("") 
    #define space putchar(' ')
    #define Mem(a, x) memset(a, x, sizeof(a))
    #define rg register
    typedef long long ll;
    typedef double db;
    const int INF = 0x3f3f3f3f;
    const db eps = 1e-8;
    const int maxn = 5e4 + 5;
    inline ll read()
    {
      ll ans = 0;
      char ch = getchar(), last = ' ';
      while(!isdigit(ch)) last = ch, ch = getchar();
      while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
      if(last == '-') ans = -ans;
      return ans;
    }
    inline void write(ll x)
    {
      if(x < 0) x = -x, putchar('-');
      if(x >= 10) write(x / 10);
      putchar(x % 10 + '0');
    }
    
    int n;
    ll dp[maxn];
    struct Node
    {
      ll x, y;
      bool operator < (const Node& oth)const
      {
        return x < oth.x || (x == oth.x && y < oth.y);
      }
    }t[maxn];
    struct Node2
    {
      int pos, L, R;
    }q[maxn];
    int l = 1, r = 0;
    
    ll Max[20][maxn], b[maxn];
    void init()
    {
      for(int i = 1; i <= n; ++i) Max[0][i] = t[i].y;
      for(int j = 1; (1 << j) <= n; ++j)
        for(int i = 1; i + (1 << j) - 1 <= n; ++i)
          Max[j][i] = max(Max[j - 1][i], Max[j - 1][i + (1 << (j - 1))]);
      int x = 0;
      for(int i = 1; i <= n; ++i)
        {
          if((1 << (x + 1)) <= i) x++;
          b[i] = x;
        }
    }
    ll query(int L, int R)
    {
      int k = b[R - L + 1];
      return max(Max[k][L], Max[k][R - (1 << k) + 1]);
    }
    
    ll w(int L, int R)
    {
      return query(L, R) * t[R].x;
    }
    
    int solve(int x, Node2 a)
    {
      int L = a.L, R = a.R;
      while(L <= R)
        {
          int mid = (L + R) >> 1;
          if(dp[x] + w(x + 1, mid) <= dp[a.pos] + w(a.pos + 1, mid))
    	{
    	  if(R != mid) R = mid;
    	  else {L = mid; break;}
    	}
          else
    	{
    	  if(L != mid + 1) L = mid + 1;
    	  else break;
    	}
        }
      return L;
    }
    
    int main()
    {
      n = read();
      for(int i = 1; i <= n; ++i) t[i].x = read(), t[i].y = read();
      sort(t + 1, t + n + 1);
      init();
      q[++r] = (Node2){0, 1, n};
      for(int i = 1; i <= n; ++i)
        {
          while(q[l].R < i) l++;
          dp[i] = dp[q[l].pos] + w(q[l].pos + 1, i);
          q[l].L = i + 1;
          while(l <= r && dp[i] + w(i + 1, q[r].L) <= dp[q[r].pos] + w(q[r].pos + 1, q[r].L)) r--;
          int pos = i;
          if(l <= r) pos = solve(i, q[r]), q[r].R = pos - 1;
          if(pos <= n) q[++r] = (Node2){i, pos, n};
        }
      write(dp[n]), enter;
      return 0;
    }
    
  • 相关阅读:
    conda 环境配置
    刨根问底 | MySQL 是如何利用索引的?
    Linux 服务器进程避免 OOM 的方法
    SQL Server中遇到tempdb突然暴涨怎么办?
    面试官:你能接受加班吗?
    TableLayoutPanel 有关合并单元格
    window批量去除文件名称空格
    第四周预习
    jar打包exe(exe4j)
    狄利克雷过程(Dirichlet Process)
  • 原文地址:https://www.cnblogs.com/mrclr/p/10122853.html
Copyright © 2020-2023  润新知