• POJ3384 Feng Shui


    嘟嘟嘟


    昨天我看到的这道题,今天终于A了。
    写这道题的时间其实并不长,主要是我为这题现学了一个半平面相交(虽然是(O(n ^ 2))的……)


    思路说难也不难,关键是第一步的转化得想到。
    首先可以肯定的是两圆要离得尽量远。
    把每一条边向内移动(r)的距离,得到一个新的比原来小的凸包,那么这个凸包表示的是两个圆的圆心可以到达的地方。于是就转化成了求最远点对了。
    向内移动(r)的距离我是用向量做的:对于边(AB),得到旋转(90)度后的向量(overrightarrow{AB'}),那么端点(A)旋转后的点(A' = A + overrightarrow{AB'} * ( frac{r}{| overrightarrow{AB'}|}))(B)同理。
    然后对于新的边(A'B'),搞一次半平面相交即可。
    然后最远点对就是套路了:跑一边凸包后搞一遍旋转卡壳,完事了。
    坑点就是这题(spj)估计是小学生写的,一是取最大值的时候,如果当前值(geqslant)最大值也得更新;二是横坐标小的点得先输出……
    还有就是求最远点对其实暴力就够了……

    #include<cstdio>
    #include<iostream>
    #include<cmath>
    #include<algorithm>
    #include<cstring>
    #include<cstdlib>
    #include<cctype>
    #include<vector>
    #include<stack>
    #include<queue>
    using namespace std;
    #define enter puts("") 
    #define space putchar(' ')
    #define Mem(a, x) memset(a, x, sizeof(a))
    #define rg register
    typedef long long ll;
    typedef double db;
    const int INF = 0x3f3f3f3f;
    const db eps = 1e-10;
    const int maxn = 1e3 + 5;
    inline ll read()
    {
      ll ans = 0;
      char ch = getchar(), last = ' ';
      while(!isdigit(ch)) last = ch, ch = getchar();
      while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
      if(last == '-') ans = -ans;
      return ans;
    }
    inline void write(ll x)
    {
      if(x < 0) x = -x, putchar('-');
      if(x >= 10) write(x / 10);
      putchar(x % 10 + '0');
    }
    
    int n, cnt;
    db r;
    struct Point
    {
      db x, y;
      Point operator - (const Point& oth)const
      {
        return (Point){x - oth.x, y - oth.y};
      }
      db operator * (const Point& oth)const
      {
        return x * oth.y - oth.x * y;
      }
      Point operator * (const db& d)const
      {
        return (Point){x * d, y * d};
      }
      friend inline Point rot(const Point& A)
      {
        return (Point){-A.y, A.x};
      }
      friend inline db dis(const Point& A)
      {
        return A.x * A.x + A.y * A.y;
      }
    }p[maxn], a[maxn];
    
    Point calc(Point N, Point A, Point B)
    {
      Point AB = rot(B - A);
      return N - (AB * (-r / sqrt(dis(A - B))));
    }
    
    int tot = 0;
    Point b[maxn];
    db cross(Point C, Point A, Point B)
    {
      return (B - A) * (C - A);
    }
    void addCross(Point A, Point B, Point C, Point D)
    {
      db s1 = (C - A) * (D - A), s2 = (D - B) * (C - B);
      b[++tot] = A - (A - B) * (s1 / (s1 + s2));
    }
    void Cut(Point A, Point B)
    {
      tot = 0;
      a[cnt + 1] = a[1];
      for(int i = 1; i <= cnt; ++i)
        {
          if(cross(a[i], A, B) < eps)
    	{
    	  b[++tot] = a[i];
    	  if(cross(a[i + 1], A, B) > eps) addCross(A, B, a[i], a[i + 1]);
    	}
          else if(cross(a[i + 1], A, B) < -eps) addCross(A, B, a[i], a[i + 1]);
        }
      for(int i = 1; i <= tot; ++i) a[i] = b[i];
      cnt = tot;
    }
    
    Point S;
    int st[maxn], top = 0;
    bool cmp(Point A, Point B)
    {
      db s = (A - S) * (B - S);
      if(fabs(s) > eps) return s > eps;
      return dis(A - S) < dis(B - S) - eps;
    }
    void Graham()
    {
      int id = 1; top = 0;
      for(int i = 2; i <= cnt; ++i)
        if(a[i].x < a[id].x - eps || (fabs(a[i].x - a[id].x) < eps && a[i].y < a[id].y - eps)) id = i;
      if(id != 1) swap(a[1].x, a[id].x), swap(a[1].y, a[id].y);
      S.x = a[1].x; S.y = a[1].y;
      sort(a + 2, a + cnt + 1, cmp);
      st[++top] = 1;
      for(int i = 2; i <= cnt; ++i)
        {
          while(top > 1 && (a[st[top]] - a[st[top - 1]]) * (a[i] - a[st[top - 1]]) < eps) top--;
          st[++top] = i;
        }
    }
    
    Point Ans1, Ans2;
    int nxt(int x)
    {
      if(++x > top) x = 1;
      return x;
    }
    db area(Point A, Point B, Point C)
    {
      return fabs((B - A) * (C - A));
    }   
    void rota()
    {
      db Max = 0;
      for(int i = 1, j = 3; i <= top; ++i)
        {
          while(nxt(j) != i && area(a[st[i]], a[st[i + 1]], a[st[j]]) < area(a[st[i]], a[st[i + 1]], a[st[nxt(j)]]) + eps) j = nxt(j);
          if(Max < dis(a[st[i]] - a[st[j]]) + eps)
    	{
    	  Max = dis(a[st[i]] - a[st[j]]);
    	  Ans1 = a[st[i]], Ans2 = a[st[j]];
    	}
          if(Max < dis(a[st[i + 1]] - a[st[j]]) + eps)
    	{
    	  Max = dis(a[st[i + 1]] - a[st[j]]);
    	  Ans1 = a[st[i + 1]], Ans2 = a[st[j]];
    	}
        }
    }
    
    int main()
    {
      while(scanf("%d%lf", &n, &r) != EOF)
        {
          cnt = n;
          for(int i = 1; i <= n; ++i) p[i].x = read(), p[i].y = read();
          for(int i = 1; i <= n; ++i) a[i] = p[i];
          p[n + 1] = p[1];
          for(int i = 1; i <= n; ++i)
    	{
    	  Point A = calc(p[i], p[i + 1], p[i]), B = calc(p[i + 1], p[i + 1], p[i]);
    	  Cut(A, B);
    	}
          Graham(); st[top + 1] = st[1];
          rota();
          if(Ans1.x > Ans2.x + eps) swap(Ans1.x, Ans2.x), swap(Ans1.y, Ans2.y);
          printf("%.4f %.4f %.4f %.4f
    ", Ans1.x, Ans1.y, Ans2.x, Ans2.y);
        }
      return 0;
    }
    
  • 相关阅读:
    教你如何去除电脑QQ聊天窗口上的广告?
    Web 通信技术 ——跨文档信息传输(JavaScript)
    JavaScript中如何给按钮设置隐藏与显示属性
    JavaScript中的innerHTML属性的使用
    JavaScript中点击按钮弹出新的浏览器窗口
    JavaScript中prompt的使用
    考试报名管理系统
    Python——用turtle模块画海龟的第一步
    Cardinality Estimation算法学习(二)(Linear Counting算法、最大似然估计(MLE))
    用KMP算法与Trie字典树实现屏蔽敏感词(UTF-8编码)
  • 原文地址:https://www.cnblogs.com/mrclr/p/10007718.html
Copyright © 2020-2023  润新知