• python3 第三十三章


    第二部分提供了更高级的模块用来支持专业编程的需要。这些模块很少出现在小型的脚本里。

    1. 输出格式化
    reprlib 模块提供了一个用来缩写显示大型或深层嵌套容器的 定制版repr() 。

    >>> import reprlib
    >>> reprlib.repr(set('supercalifragilisticexpialidocious'))
    "{'a', 'c', 'd', 'e', 'f', 'g', ...}"

    pprint模块为 打印对解释器可读的 内置和用户自定义的对象 提供了更复杂控制方式.当结果超过一行时,这个"漂亮的打印机"将添加分行符和缩进,以更清楚地显示数据结构:

    >>> import pprint
    >>> t = [[[['black', 'cyan'], 'white', ['green', 'red']], [['magenta',
    ...     'yellow'], 'blue']]]
    ...
    >>> pprint.pprint(t, width=30)
    [[[['black', 'cyan'],
       'white',
       ['green', 'red']],
      [['magenta', 'yellow'],
       'blue']]]

     textwrap模块使文本内容的段落格式适应 给定的屏幕宽度:

    >>> import textwrap
    >>> doc = """The wrap() method is just like fill() except that it returns
    ... a list of strings instead of one big string with newlines to separate
    ... the wrapped lines."""
    ...
    >>> print(textwrap.fill(doc, width=40))
    The wrap() method is just like fill()
    except that it returns a list of strings
    instead of one big string with newlines
    to separate the wrapped lines.

     locale 模块访问一种特定格式的数据库.local 模块的format函数 的grouping[分组]属性 直接提供一种用 组分隔符 格式化数字的方式:

    >>> import locale
    >>> locale.setlocale(locale.LC_ALL, 'English_United States.1252')
    'English_United States.1252'
    >>> conv = locale.localeconv()          # get a mapping of conventions
    >>> x = 1234567.8
    >>> locale.format("%d", x, grouping=True)
    '1,234,567'
    >>> locale.format_string("%s%.*f", (conv['currency_symbol'],
    ...                      conv['frac_digits'], x), grouping=True)
    '$1,234,567.80'

    2. 模板化

    string 模板包含一个 拥有简化语法适用于客户端用户编辑的 通用的 Template 类.这允许用户自定义他们的应用程序无需修改应用程序。

    格式是使用由 $ 与有效的 Python 标识符(字母 数字字符和下划线) 命名的占位符.占位符周围的大括号允许它使用更多的字母 数字字符 并且中间没有空格。写 $$ 创建一个单一的转义的 $ :

    >>> from string import Template
    >>> t = Template('${village}folk send $$10 to $cause.')
    >>> t.substitute(village='Nottingham', cause='the ditch fund')
    'Nottinghamfolk send $10 to the ditch fund.'

     当字典或关键字参数中没有提供 占位符(需要的变量值) 时 substitute()方法将会抛出 KeyError.对于邮件合并样式的应用程序来说,safe_substitute()方法可能更合适, 因为用户提供的数据可能不完整,而safe_substitute方法将不会处理数据丢失了的占位符.

    >>> t = Template('Return the $item to $owner.')
    >>> d = dict(item='unladen swallow')
    >>> t.substitute(d)
    Traceback (most recent call last):
      ...
    KeyError: 'owner'
    >>> t.safe_substitute(d)
    'Return the unladen swallow to $owner.'

    Template 类的子类可以指定自定义的分隔符。例如,图像浏览器的批量命名工具可能选用百分号作为表示当前日期、图像 序列号或文件格式的占位符:

    >>> import time, os.path
    >>> photofiles = ['img_1074.jpg', 'img_1076.jpg', 'img_1077.jpg']
    >>> class BatchRename(Template):
    ...     delimiter = '%'
    >>> fmt = input('Enter rename style (%d-date %n-seqnum %f-format):  ')
    Enter rename style (%d-date %n-seqnum %f-format):  Ashley_%n%f
    
    >>> t = BatchRename(fmt)
    >>> date = time.strftime('%d%b%y')
    >>> for i, filename in enumerate(photofiles):
    ...     base, ext = os.path.splitext(filename)
    ...     newname = t.substitute(d=date, n=i, f=ext)
    ...     print('{0} --> {1}'.format(filename, newname))
    
    img_1074.jpg --> Ashley_0.jpg
    img_1076.jpg --> Ashley_1.jpg
    img_1077.jpg --> Ashley_2.jpg

     模板的另一个应用是把多样的输出格式细节从程序逻辑中分类出来。这使它能够替代用户的 XML 文件、 纯文本报告和 HTML 网页报表。

    3. 使用二进制文件记录数据布局

    struct 模块提供了 pack() 和 unpack() 方法来处理可变长度的二进制记录格式。下面的示例演示如何遍历一个 ZIP 文件的标头信息而无需使用 zipfile 模块。包代码"H" 和 "I"分别表示2个字节和4个字节的无符号数字。"<"表示使用标准大小和小端模式。

    import struct
    
    with open('myfile.zip', 'rb') as f:
        data = f.read()
    
    start = 0
    for i in range(3):                      # show the first 3 file headers
        start += 14
        fields = struct.unpack('<IIIHH', data[start:start+16])
        crc32, comp_size, uncomp_size, filenamesize, extra_size = fields
    
        start += 16
        filename = data[start:start+filenamesize]
        start += filenamesize
        extra = data[start:start+extra_size]
        print(filename, hex(crc32), comp_size, uncomp_size)
    
        start += extra_size + comp_size     # skip to the next header

    4. 多线程

    线程是一种解耦非顺序依赖任务的技术。当其他任务在后台运行时,线程可以用来提高应用程序接受用户输入操作的响应能力。一个相关的使用场景是 I/O 操作与另一个线程中的计算并行执行。

    下面的代码演示了当主程序在运行的同时,高层的 threading 模块可以在后台执行任务。

    import threading, zipfile
    
    class AsyncZip(threading.Thread):
        def __init__(self, infile, outfile):
            threading.Thread.__init__(self)
            self.infile = infile
            self.outfile = outfile
    
        def run(self):
            f = zipfile.ZipFile(self.outfile, 'w', zipfile.ZIP_DEFLATED)
            f.write(self.infile)
            f.close()
            print('Finished background zip of:', self.infile)
    
    background = AsyncZip('mydata.txt', 'myarchive.zip')
    background.start()
    print('The main program continues to run in foreground.')
    
    background.join()    # Wait for the background task to finish
    print('Main program waited until background was done.')

    多线程应用程序的最主要挑战是协调线程间共享的数据或其他资源。为此目的,该线程模块提供了许多同步原语包括锁、 事件、 条件变量和信号量。

    尽管这些工具很强大,很小的设计错误也可能导致很难复现的问题。因此,任务协调的首选方法是将所有对某个资源的访问集中在单个线程中,然后使用queue模块向该线程提供来自其他线程的请求。使用队列对象进行线程间通信和协调的应用程序更易于设计,更易于阅读和更可靠。

    5. 日志

    logging模块提供了一个全功能和灵活的日志系统。最简单的,日志消息发送到文件或sys.stderr:

    import logging
    logging.debug('Debugging information')
    logging.info('Informational message')
    logging.warning('Warning:config file %s not found', 'server.conf')
    logging.error('Error occurred')
    logging.critical('Critical error -- shutting down')

    这将生成以下输出:

    WARNING:root:Warning:config file server.conf not found
    ERROR:root:Error occurred
    CRITICAL:root:Critical error -- shutting down

    默认情况下,信息和调试消息被压制并输出到标准错误。其他输出选项包括将消息通过email、 datagrams、sockets发送,或者发送到 HTTP 服务器。新过滤器可以根据消息优先级选择不同的路由:DEBUG、INFO、WARNING,ERROR和CRITICAL。

    日志系统可以直接在 Python 代码中定制,也可以不经过应用程序直接在一个用户可编辑的配置文件中加载。

    6. 弱引用

    Python执行自动内存管理(大多数对象采用引用计数和垃圾回收以消除循环)。在最后一个引用消失后,内存会立即释放。

    这个方式对大多数应用程序工作良好,但是有时候会需要跟踪对象,只要它们还被其它地方所使用。不幸的是,只是跟踪它们会创建一个引用,这个引用会一直存在。weakref模块提供了用于跟踪对象的工具,而无需创建引用。当不再需要该对象时,它会自动从 weakref 表中删除并且会为 weakref 对象触发一个回调。典型的应用包括缓存创建的时候需要很大开销的对象:

    >>> import weakref, gc
    >>> class A:
    ...     def __init__(self, value):
    ...         self.value = value
    ...     def __repr__(self):
    ...         return str(self.value)
    ...
    >>> a = A(10)                   # create a reference
    >>> d = weakref.WeakValueDictionary()
    >>> d['primary'] = a            # does not create a reference
    >>> d['primary']                # fetch the object if it is still alive
    10
    >>> del a                       # remove the one reference
    >>> gc.collect()                # run garbage collection right away
    0
    >>> d['primary']                # entry was automatically removed
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
        d['primary']                # entry was automatically removed
      File "C:/python35/lib/weakref.py", line 46, in __getitem__
        o = self.data[key]()
    KeyError: 'primary'

    7. 使用列表的工具

    很多数据结构使用内置列表类型就可以满足需求。然而,有时需要其它具有不同性能的替代实现。

    array 模块提供了 array()对象,这个对象像列表一样,它只存储相似的数据并且更加简洁。以下示例显示存储为两个字节无符号二进制数(类型代码“H”)的数字数组,而不是每个条目通常是16个字节的Python int对象的常规列表:

    >>> from array import array
    >>> a = array('H', [4000, 10, 700, 22222])
    >>> sum(a)
    26932
    >>> a[1:3]
    array('H', [10, 700])

    collections 模块提供了一个 deque()对象,像list但是拥有从左边更快的赋值速度和读取速度,但是从中间检索会更慢。这些对象非常适合实现队列和广度优先的树搜索:

    >>> from collections import deque
    >>> d = deque(["task1", "task2", "task3"])
    >>> d.append("task4")
    >>> print("Handling", d.popleft())
    Handling task1
    unsearched = deque([starting_node])
    def breadth_first_search(unsearched):
        node = unsearched.popleft()
        for m in gen_moves(node):
            if is_goal(m):
                return m
            unsearched.append(m)

    除了列表实现方式可供选择 , 这个库还提供了其他工具,例如带有操作排序列表方法的bisect 模块:

    >>> import bisect
    >>> scores = [(100, 'perl'), (200, 'tcl'), (400, 'lua'), (500, 'python')]
    >>> bisect.insort(scores, (300, 'ruby'))
    >>> scores
    [(100, 'perl'), (200, 'tcl'), (300, 'ruby'), (400, 'lua'), (500, 'python')]

    heapq模块提供了基于常规列表实现堆的功能。最小的值总是保持在第零个位置。这对于需要循环访问最小元素,但是不想运行完整列表排序的应用非常有用:

    >>> from heapq import heapify, heappop, heappush
    >>> data = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
    >>> heapify(data)                      # rearrange the list into heap order
    >>> heappush(data, -5)                 # add a new entry
    >>> [heappop(data) for i in range(3)]  # fetch the three smallest entries
    [-5, 0, 1]

    8. 十进制浮点算术

    decimal模块提供了用于十进制浮点运算的Decimal数据类型。与内置的float二进制浮点的实现相比,该类特别有用

    •     财务应用程序和其他用途,需要精确的十进制表示形式,
    •     控制精度,
    •     对符合法律或法规要求,舍入的控制
    •     跟踪有效小数位
    •     用户希望计算结果与手工计算相符的应用程序。


    例如,使用十进制浮点和二进制浮点来计算70%电话费的 5%税所得的结果是不同的。在将结果四舍五入到最接近的百分数时差异变得显著:

    >>> from decimal import *
    >>> round(Decimal('0.70') * Decimal('1.05'), 2)
    Decimal('0.74')
    >>> round(.70 * 1.05, 2)
    0.73

    Decimal结果保留结尾的零,从具有两个有效数字的乘数自动推断四个有效数字。通过模拟笔算,避免了当二进制浮点表示十进制数时可能出现的精度问题。

    精确的结果使得 Decimal 类能够执行不适合二进制浮点的模运算和数值比较:

    >>> Decimal('1.00') % Decimal('.10')
    Decimal('0.00')
    >>> 1.00 % 0.10
    0.09999999999999995
    
    >>> sum([Decimal('0.1')]*10) == Decimal('1.0')
    True
    >>> sum([0.1]*10) == 1.0
    False

    decimal模块提供具有所需精度的算术操作:

    >>> getcontext().prec = 36
    >>> Decimal(1) / Decimal(7)
    Decimal('0.142857142857142857142857142857142857')
  • 相关阅读:
    [FAQ] GitHub 开启二次验证之后,如何通过 https clone 项目 ?
    [FAQ] GoLand 需要手动开启代码补全吗 ?
    [FAQ] 夏玉米 按规则查询域名靠谱吗 ?
    [FAQ] Error: com.mysql.jdbc.Driver not loaded. :jdbc_driver_library
    [php-src] Php内核的有趣高频宏
    [php-src] Php扩展开发的琐碎注意点、细节
    [ELK] Docker 运行 Elastic Stack 支持 TLS 的两种简单方式
    [Contract] Solidity 生成随机数方案
    [MySQL] 导入数据库和表的两种方式
    [ELK] 生产环境中 Elasticsearch 的重要配置项
  • 原文地址:https://www.cnblogs.com/mrbug/p/8822943.html
Copyright © 2020-2023  润新知