版权声明:本文为博主原创文章,未经博主同意不得转载。
vasttian https://blog.csdn.net/u012860063/article/details/36426357
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2824
欧拉函数性质:
1:(百科):http://baike.baidu.com/link?url=r-yneKCCyS9N6bhbQCqiZX0V2OCYq9r7iHSzHTSs03H7qRvu1OfUzlOxfVEs2PmR
2:http://www.cppblog.com/doer-xee/archive/2009/12/01/102353.html
Problem Description
The Euler function phi is an important kind of function in number theory, (n) represents the amount of the numbers which are smaller than n and coprime to n, and this function has a lot of beautiful characteristics. Here comes a very
easy question: suppose you are given a, b, try to calculate (a)+ (a+1)+....+ (b)
Input
There are several test cases. Each line has two integers a, b (2<a<b<3000000).
Output
Output the result of (a)+ (a+1)+....+ (b)
Sample Input
3 100
Sample Output
3042
Source
题意:求a到b中每一个数的欧拉函数的总和!
代码例如以下:
#include <iostream>
#include <cstdio>
#include <cmath>
using namespace std;
#define N 3000001
__int64 phi[N];
void init()
{
int i, j;
for(i = 1; i < N; i++)
phi[i] = i;
for(i = 2; i < N; i++)
if(i == phi[i]) //此时i为素数
for(j = i; j < N; j += i) //j累加i
phi[j] = (phi[j] / i) * (i - 1); //j有因子i,并且i是素数,正是欧拉函数
}
int main()
{
init();
int a, b;
while(scanf("%d%d", &a, &b) != EOF)
{
__int64 ans = 0;
for(int i = a; i <= b; i++)
ans += phi[i];
printf("%I64d
", ans);
}
return 0;
}