直接暴力定义f[x1][y1][x2][y2]
是使对角为((x1, y1),(x2, y2))这个子矩形满足要求的最短切割线长度
因为转移顺序不好递推,采用记忆化搜索
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define LL long long
using namespace std;
LL read() {
LL k = 0, f = 1; char c = getchar();
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9')
k = k * 10 + c - 48, c = getchar();
return k * f;
}
int f[21][21][21][21], sum[21][21];
bool mapp[21][21];
int dp(int x1, int y1, int x2, int y2) {
int num = sum[x2][y2] - sum[x1-1][y2] - sum[x2][y1-1] + sum[x1-1][y1-1];
if(num == 1) return f[x1][y1][x2][y2] = 0;
if(num == 0) return f[x1][y1][x2][y2] = 2147483647 / 3;
if(f[x1][y1][x2][y2] != -1) return f[x1][y1][x2][y2];
f[x1][y1][x2][y2] = 2147483647 / 3;
for(int i = x1; i < x2; ++i)
f[x1][y1][x2][y2] = min(dp(i+1, y1, x2, y2) + dp(x1, y1, i, y2) + abs(y1 - y2) + 1, f[x1][y1][x2][y2]);
for(int i = y1; i < y2; ++i)
f[x1][y1][x2][y2] = min(dp(x1, y1, x2, i) + dp(x1, i+1, x2, y2) + abs(x1 - x2) + 1, f[x1][y1][x2][y2]);
return f[x1][y1][x2][y2];
}
int n, m, k;
void solve(int tot) {
memset(f, -1, sizeof(f));
memset(mapp, 0, sizeof(mapp));
for(int i = 1; i <= k; ++i) {
int x = read(), y = read();
mapp[x][y] = 1;
}
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= m; ++j)
sum[i][j] = sum[i-1][j] + sum[i][j-1] - sum[i-1][j-1] + mapp[i][j];
dp(1, 1, n, m);
printf("Case %d: %d
", tot, f[1][1][n][m]);
}
int main() {
int tot = 0;
while(scanf("%d %d %d", &n, &m, &k) != EOF)
solve(++tot);
return 0;
}