The "Hamilton cycle problem" is to find a simple cycle that contains every vertex in a graph. Such a cycle is called a "Hamiltonian cycle".
In this problem, you are supposed to tell if a given cycle is a Hamiltonian cycle.
Input Specification:
Each input file contains one test case. For each case, the first line contains 2 positive integers N (2< N <= 200), the number of vertices, and M, the number of edges in an undirected graph. Then M lines follow, each describes an edge in the format "Vertex1 Vertex2", where the vertices are numbered from 1 to N. The next line gives a positive integer K which is the number of queries, followed by K lines of queries, each in the format:
n V1 V2 ... Vn
where n is the number of vertices in the list, and Vi's are the vertices on a path.
Output Specification:
For each query, print in a line "YES" if the path does form a Hamiltonian cycle, or "NO" if not.
Sample Input:
6 10
6 2
3 4
1 5
2 5
3 1
4 1
1 6
6 3
1 2
4 5
6
7 5 1 4 3 6 2 5
6 5 1 4 3 6 2
9 6 2 1 6 3 4 5 2 6
4 1 2 5 1
7 6 1 3 4 5 2 6
7 6 1 2 5 4 3 1
Sample Output:
YES
NO
NO
NO
YES
NO
题目大意:
给出一个图,判断给定的路径是不是哈密尔顿路径
分析:
1.设置falg1 判断节点是否多走、少走、或走成环
2.设置flag2 判断这条路能不能走通
3.当falg1、flag2都为1时是哈密尔顿路径,否则不是
原文链接:https://blog.csdn.net/liuchuo/article/details/53572051
题解
#include <bits/stdc++.h>
using namespace std;
int n,m;
int G[210][210];
int main()
{
#ifdef ONLINE_JUDGE
#else
freopen("1.txt", "r", stdin);
#endif
int a,b;
cin>>n>>m;
for(int i=0;i<m;i++){
cin>>a>>b;
G[a][b]=1;
G[b][a]=1;
}
int k,num;
cin>>k;
while(k--){
bool flag1=true,flag2=true;
cin>>num;
vector<int> v(num);
set<int> s;
for(int i=0;i<num;i++){
cin>>v[i];
s.insert(v[i]);
}
if(s.size()!=n||n!=num-1||v[0]!=v[num-1]) flag1=false;
for(int i=0;i<num-1;i++)
if(G[v[i]][v[i+1]]==0) flag2=false;
printf("%s",flag1 && flag2 ? "YES\n" : "NO\n");
}
return 0;
}