• 最大流算法统计


    对最大流算法历史文献的一个调研

    Table: Polynomial algorithms for the max flow problem

      No   Duo to     Year     Running Time;
    1 Ford & Fulkerson [1] 1956 (O(nmU))
    2 Edmonds and Karp [2] 1972 (O(nm^2))
    3 Dinic [3] 1970 (O(n^2m))
    4 Karzanov [4] 1974 (O(n^3))
    5 Cherkasky [5] 1977 (O(n^2sqrt{m}))
    6 Malhotra, Kumar & Maheshwari [6] 1977 (O(n^3))
    7 Galil [7] 1980 (O(n^(5/3)m^(2/3)))
    8 Galil & Naaman [8] 1980 (O(nmlog^2n))
    9 Sleator & Tarjan [9] 1983 (O(nmlogn))
    10 Gabow [10] 1985 (O(nmlogU))
    11 Goldberg & Tarjan [11] 1988 (O(nmlog(n^2/m)))
    12 Ahuja & Orlin [12] 1989 (O(nm + n^2logU))
    13 Ahuja, Orlin & Tarjan [13] 1989 (O(nmlog(nsqrt{U}/(m + 2)))
    14 King, Rao & Tarjan [14] 1992 (O(nm+n^{2+e}))
    15 King, Rao & Tarjan [15] 1994 (O(nmlog_{m/nlogn}n))
    16 Cheriyan, Hagerup & Mehlhorn [16] 1996 (O(n^3/logn))
    17 Goldberg & Rao [17] 1998 (O(min{n^(2/3),m^{1/2}}mlog{n2/m}logU))
    18 Orlin [18] 2012 (O(nm))
    19 Orlin [18] 2012 (O(n^2/logn) if m = O(n))
    • [1] L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian Journal of Mathematics, 8:399-404, 1956.
    • [2] J. Edmonds and R. M. Karp. Theoretical improvements in algorithmic eciency for network flow problems. Journal of the ACM, 19:248-264, 1972.
    • [3] E. A. Dinic. Algorithm for solution of a problem of maximum flow in networks with power estimation. Soviet Mathematics Doklady, 11:1277{1280, 1970
    • [4] A. V. Karzanov. Determining the maximal flow in a network by the method of preflows. Soviet Mathematics Doklady, 15:434-437, 1974.
    • [5] B. V. Cherkasky. Algorithm for construction of maximal flow in networks with complexity of (O(V^2sqrt{E})) operations. Mathematical Methods of Solution of Economical Problems, 17:112-125, 1977. (In Russian).
    • [6] V. M. Malhotra, P. Kumar, and S. N. Maheshwari. An (O(V^3)) algorithm for fi nding the maximum flows in networks. Information Processing Letters, 7:277-278, 1978.
    • [7] Z. Galil. An (O(V^{5/3}E^{2/3})) algorithm for the maximal flow problem. Acta Informatica, 14(3):221-242, 1980.
    • [8] Z. Galil and A. Naaman. An (O(VElog^2E)) algorithm for the maximal flow problem. J.Computer and System Sciences, 21:203-217., 1980.
    • [9] D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees. J. Computer and System Sciences, 24:362-391, 1983.
    • [10] H. N. Gabow. A data structure for dynamic trees. J. Computer and System Sciences, 31:148-168, 1985.
    • [11] A. V. Goldberg and R. E. Tarjan. A new approach to the maximum flow problem. Journal of the ACM, 35:921-940, 1988.
    • [12] R. K. Ahuja and J. B. Orlin. A fast and simple algorithm for the maximum flow problem. Operations Research, 37:748-759, 1989.
    • [13] R. K. Ahuja, J. B. Orlin, and R. E. Tarjan. Improved time bounds for the maximum flow problem. SIAM Journal on Computing, 18:939-954, 1989.
    • [14] V. King, S. Rao, and R. Tarjan. A faster deterministic maximum flow algorithm. In Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 157{164, 1992.
    • [15] V. King, S. Rao, and R. Tarjan. A faster deterministic maximum flow algorithm. J. Algorithms, 23:447-474, 1994.
    • [16] J. Cheriyan, T. Hagerup, and K. Mehlhorn. An (O(n^3)) time maximum-flow algorithm. SIAM Journal on Computing, 45:1144-1170, 1996.
    • [17] A. V. Goldberg and S. Rao. Beyond the flow decomposition barrier. Journal of the ACM, 45:783-797, 1998.
    • [18] J. B. Orlin, “Max flows in (o(nm)) time, or better,” in Proceedings of the 45th annual ACM symposium on Symposium on theory of computing, ser. STOC ’13. New York, NY,USA: ACM, 2013, pp. 765–774. [Online]. Available: http://doi.acm.org/10.1145/2488608.2488705
  • 相关阅读:
    ASP.NET Web API 控制器执行过程(一)
    ASP.NET Web API 控制器创建过程(二)
    ASP.NET Web API 控制器创建过程(一)
    ASP.NET Web API WebHost宿主环境中管道、路由
    ASP.NET Web API Selfhost宿主环境中管道、路由
    ASP.NET Web API 管道模型
    ASP.NET Web API 路由对象介绍
    ASP.NET Web API 开篇示例介绍
    ASP.NET MVC 视图(五)
    ASP.NET MVC 视图(四)
  • 原文地址:https://www.cnblogs.com/moondark/p/4059578.html
Copyright © 2020-2023  润新知