• java 各基本类型转 bytes 数组


    java 将 基本类型转byte[] 数组时,需考虑大端小端问题


    1. 大端格式下,基本类型与byte[]互转 BigByteUtil.java

    package com.ysq.util;
    
    import java.nio.ByteBuffer;
    import java.nio.ByteOrder;
    import java.nio.charset.Charset;
    import java.util.logging.Logger;
    
    /**
     * 大端 byte 工具类
     * @author admin
     *
     */
    public class BigByteUtil {
    	static Logger logger = Logger.getLogger(BigByteUtil.class.getName());
    	
    	/**
    	 * short 转 byte[]
    	 * 大端
    	 * @param data
    	 * @return
    	 */
    	public static byte[] getShortBytes(short data) {
    		ByteBuffer buffer = ByteBuffer.allocate(2);
    		buffer.order(ByteOrder.BIG_ENDIAN);
    		buffer.putShort(data);
    		byte[] bytes = buffer.array();
    		return bytes;
    	}
    
    	/**
    	 * chart 转 byte[]
    	 * 大端
    	 * @param data
    	 * @return
    	 */
    	public static byte[] getCharBytes(char data) {
    		ByteBuffer buffer = ByteBuffer.allocate(2);
    		buffer.order(ByteOrder.BIG_ENDIAN);
    		buffer.putChar(data);
    		byte[] bytes = buffer.array();
    		return bytes;
    	}
    
    	/**
    	 * int 转 byte[]
    	 * 大端
    	 * @param data
    	 * @return
    	 */
    	public static byte[] getIntBytes(int data) {
    		ByteBuffer buffer = ByteBuffer.allocate(4);
    		buffer.order(ByteOrder.BIG_ENDIAN);
    		buffer.putInt(data);
    		byte[] bytes = buffer.array();
    		return bytes;
    	}
    
    	/**
    	 * long 转 byte[]
    	 * 大端
    	 * @param data
    	 * @return
    	 */
    	public static byte[] getLongBytes(long data) {
    		ByteBuffer buffer = ByteBuffer.allocate(8);
    		buffer.order(ByteOrder.BIG_ENDIAN);
    		buffer.putLong(data);
    		byte[] bytes = buffer.array();
    		return bytes;
    	}
    
    	/**
    	 * float 转 byte[]
    	 * 大端
    	 * @param data
    	 * @return
    	 */
    	public static byte[] getFloatBytes(float data) {
    		ByteBuffer buffer = ByteBuffer.allocate(4);
    		buffer.order(ByteOrder.BIG_ENDIAN);
    		buffer.putFloat(data);
    		byte[] bytes = buffer.array();
    		return bytes;
    	}
    
    	/**
    	 * double 转 byte[]
    	 * 大端
    	 * @param data
    	 * @return
    	 */
    	public static byte[] getDoubleBytes(double data) {
    		ByteBuffer buffer = ByteBuffer.allocate(8);
    		buffer.order(ByteOrder.BIG_ENDIAN);
    		buffer.putDouble(data);
    		byte[] bytes = buffer.array();
    		return bytes;
    	}
    
    	/**
    	 * String 转 byte[]
    	 * 
    	 * @param data
    	 * @param charsetName
    	 * @return
    	 */
    	public static byte[] getStringBytes(String data, String charsetName) {
    		Charset charset = Charset.forName(charsetName);
    		byte[] bytes = data.getBytes(charset);
    		return bytes;
    	}
    
    	/**
    	 * String 转 byte[]
    	 * 
    	 * @param data
    	 * @return
    	 */
    	public static byte[] getStringBytes(String data) {
    		byte[] bytes = null;
    		if(data != null){
    			bytes = data.getBytes();
    		}else{
    			bytes = new byte[0];
    		}
    		return bytes;
    	}
    
    	/*****************************************************************************************************************************/
    	
    	/**
    	 * byte[] 转short
    	 * 大端
    	 * @param bytes
    	 * @return
    	 */
    	public static short getShort(byte[] bytes) {
    		ByteBuffer buffer = ByteBuffer.allocate(bytes.length);
    		buffer.order(ByteOrder.BIG_ENDIAN);
    		buffer.put(bytes);
    		short result = buffer.getShort(0);
    		return result;
    	}
    
    	/**
    	 * byte[] 转 char
    	 * 大端
    	 * @param bytes
    	 * @return
    	 */
    	public static char getChar(byte[] bytes) {
    		ByteBuffer buffer = ByteBuffer.allocate(bytes.length);
    		buffer.order(ByteOrder.BIG_ENDIAN);
    		buffer.put(bytes);
    		char result = buffer.getChar(0);
    		return result;
    	}
    
    	/**
    	 * byte[] 转 int
    	 * 大端
    	 * @param bytes
    	 * @return
    	 */
    	public static int getInt(byte[] bytes) {
    		ByteBuffer buffer = ByteBuffer.allocate(bytes.length);
    		buffer.order(ByteOrder.BIG_ENDIAN);
    		buffer.put(bytes);
    		int result = buffer.getInt(0);
    		return result;
    	}
    
    	/**
    	 * byte[] 转 long
    	 * 
    	 * @param bytes
    	 * @return
    	 */
    	public static long getLong(byte[] bytes) {
    		ByteBuffer buffer = ByteBuffer.allocate(bytes.length);
    		buffer.order(ByteOrder.BIG_ENDIAN);
    		buffer.put(bytes);
    		long result = buffer.getLong(0);
    		return result;
    	}
    
    	/**
    	 * byte[] 转 float
    	 * 
    	 * @param bytes
    	 * @return
    	 */
    	public static float getFloat(byte[] bytes) {
    		ByteBuffer buffer = ByteBuffer.allocate(bytes.length);
    		buffer.order(ByteOrder.BIG_ENDIAN);
    		buffer.put(bytes);
    		float result = buffer.getFloat(0);
    		return result;
    	}
    
    	/**
    	 * byte[] 转 double
    	 * 
    	 * @param bytes
    	 * @return
    	 */
    	public static double getDouble(byte[] bytes) {
    		ByteBuffer buffer = ByteBuffer.allocate(bytes.length);
    		buffer.order(ByteOrder.BIG_ENDIAN);
    		buffer.put(bytes);
    		double result = buffer.getDouble(0);
    		return result;
    	}
    
    	/**
    	 * byte[] 转 String
    	 * 
    	 * @param bytes
    	 * @param charsetName
    	 * @return
    	 */
    	public static String getString(byte[] bytes, String charsetName) {
    		String result = new String(bytes, Charset.forName(charsetName));
    		return result;
    	}
    
    	/**
    	 * byte[] 转 String
    	 * 
    	 * @param bytes
    	 * @return
    	 */
    	public static String getString(byte[] bytes) {
    		String result = new String(bytes);
    		return result;
    	}
    	
    	/**
    	 * 验证测试
    	 */
    	private static void verifiTest(){
    		
    		short s = 1111;
    		int i = 2222;
    		long l = 333333;
    		char c = 'c';
    		float f = 444.44f;
    		double d = 555.55;
    		String string = "测试字符串666";
    
    		System.out.println(s);
    		System.out.println(i);
    		System.out.println(l);
    		System.out.println(c);
    		System.out.println(f);
    		System.out.println(d);
    		System.out.println(string);
    
    		System.out.println("**************");
    
    		System.out.println(getShort(getShortBytes(s)));
    		System.out.println(getInt(getIntBytes(i)));
    		System.out.println(getLong(getLongBytes(l)));
    		System.out.println(getChar(getCharBytes(c)));
    		System.out.println(getFloat(getFloatBytes(f)));
    		System.out.println(getDouble(getDoubleBytes(d)));
    		System.out.println(getString(getStringBytes(string)));
    		
    	}
    	
    	
    	public static void main(String[] args) {
    		verifiTest();
    		
    		System.out.println("finished ... ");
    	}
    }
    



    2. 小端格式下,基本类型与byte[]互转 LittleByteUtil.java

        两种方法在效率上没有太大差别

    package com.ysq.util;
    
    import java.nio.ByteBuffer;
    import java.nio.ByteOrder;
    import java.nio.charset.Charset;
    import java.util.Arrays;
    import java.util.logging.Logger;
    
    /**
     * 小端转换
     * java 基础类型与 byte[] 相互转换
     * 
     * @author admin
     *
     */
    public class LittleByteUtil {
    	static Logger logger = Logger.getLogger(LittleByteUtil.class.getName());
    	
    	static final long fx = 0xffl;
    	/**
    	 * short 转 byte[]
    	 * 小端
    	 * @param data
    	 * @return
    	 */
    	public static byte[] getShortBytes(short data) {
    		byte[] bytes = new byte[2];
    		bytes[0] = (byte) (data & fx);
    		bytes[1] = (byte) ((data >> 8) & fx);
    		return bytes;
    	}
    
    	/**
    	 * chart 转 byte[]
    	 * 小端
    	 * @param data
    	 * @return
    	 */
    	public static byte[] getCharBytes(char data) {
    		byte[] bytes = new byte[2];
    		bytes[0] = (byte) (data & fx);
    		bytes[1] = (byte) ((data >> 8) & fx);
    		return bytes;
    	}
    
    	/**
    	 * int 转 byte[]
    	 * 小端
    	 * @param data
    	 * @return
    	 */
    	public static byte[] getIntBytes(int data) {
    		int length = 4;
    		byte[] bytes = new byte[length];
    		for (int i = 0; i < length; i++) {
    			bytes[i] = (byte) ((data >> (i*8)) & fx);
    		}
    		return bytes;
    	}
    
    	/**
    	 * long 转 byte[]
    	 * 小端
    	 * @param data
    	 * @return
    	 */
    	public static byte[] getLongBytes(long data) {
    		int length = 8;
    		byte[] bytes = new byte[length];
    		
    		for (int i = 0; i < length; i++) {
    			bytes[i] = (byte) ((data >> (i*8)) & fx);
    		}
    		return bytes;
    	}
    
    	/**
    	 * float 转 byte[]
    	 * 小端
    	 * @param data
    	 * @return
    	 */
    	public static byte[] getFloatBytes(float data) {
    		int intBits = Float.floatToIntBits(data);
    
    		byte[] bytes = getIntBytes(intBits);
    		
    		return bytes;
    	}
    
    	/**
    	 * double 转 byte[]
    	 * 小端
    	 * @param data
    	 * @return
    	 */
    	public static byte[] getDoubleBytes(double data) {
    		long intBits = Double.doubleToLongBits(data);
    		byte[] bytes = getLongBytes(intBits);
    		return bytes;
    	}
    
    	/**
    	 * String 转 byte[]
    	 * 
    	 * @param data
    	 * @param charsetName
    	 * @return
    	 */
    	public static byte[] getStringBytes(String data, String charsetName) {
    		Charset charset = Charset.forName(charsetName);
    		byte[] bytes = data.getBytes(charset);
    		return bytes;
    	}
    
    	/**
    	 * String 转 byte[]
    	 * 
    	 * @param data
    	 * @return
    	 */
    	public static byte[] getStringBytes(String data) {
    		byte[] bytes = null;
    		if(data != null){
    			bytes = data.getBytes();
    		}else{
    			bytes = new byte[0];
    		}
    		return bytes;
    	}
    
    	/**
    	 * byte[] 转short
    	 * 小端
    	 * @param bytes
    	 * @return
    	 */
    	public static short getShort(byte[] bytes) {
    		short result = (short) ((fx & bytes[0])
    				| ((fx & bytes[1]) << 8));
    		return result;
    	}
    
    	/**
    	 * byte[] 转 char
    	 * 小端
    	 * @param bytes
    	 * @return
    	 */
    	public static char getChar(byte[] bytes) {
    		char result = (char) ((fx & bytes[0])
    				| ((fx & bytes[1]) << 8));
    		return result;
    	}
    
    	/**
    	 * byte[] 转 int
    	 * 
    	 * @param bytes
    	 * @return
    	 */
    	public static int getInt(byte[] bytes) {
    		int result = (int) ((fx & bytes[0])
    			| ((fx & bytes[1]) << 8)
    			| ((fx & bytes[2]) << 16)
    			| ((fx & bytes[3]) << 24));
    		
    		return result;
    	}
    
    	/**
    	 * byte[] 转 long
    	 * 
    	 * @param bytes
    	 * @return
    	 */
    	public static long getLong(byte[] bytes) {
    		long result = (long)((long)(fx & bytes[0])
    				| (long)((fx & bytes[1]) << 8)
    				| (long)((fx & bytes[2]) << 16)
    				| (long)((fx & bytes[3]) << 24)
    				| (long)((fx & bytes[4]) << 32)
    				| (long)((fx & bytes[5]) << 40)
    				| (long)((fx & bytes[6]) << 48)
    				| (long)((fx & bytes[7]) << 56));
    		
    		return result;
    	}
    
    	/**
    	 * byte[] 转 float
    	 * 
    	 * @param bytes
    	 * @return
    	 */
    	public static float getFloat(byte[] b) {
    		int l = getInt(b);
    		return Float.intBitsToFloat(l);
    	}
    
    	/**
    	 * byte[] 转 double
    	 * 
    	 * @param bytes
    	 * @return
    	 */
    	public static double getDouble(byte[] bytes) {
    		
    		long l = getLong(bytes);
    		return Double.longBitsToDouble(l);
    	}
    
    	/**
    	 * byte[] 转 String
    	 * 
    	 * @param bytes
    	 * @param charsetName
    	 * @return
    	 */
    	public static String getString(byte[] bytes, String charsetName) {
    		String result = new String(bytes, Charset.forName(charsetName));
    		return result;
    	}
    
    	/**
    	 * byte[] 转 String
    	 * 
    	 * @param bytes
    	 * @return
    	 */
    	public static String getString(byte[] bytes) {
    		String result = new String(bytes);
    		return result;
    	}
    
    	/**
    	 * 追加数组
    	 * 
    	 * @param target
    	 * @param append
    	 * @return
    	 */
    	public static byte[] appendByte(byte[] target, byte[] append) {
    		int originalLength = target.length;
    		int appendLength = append.length;
    		// 先扩容长度
    		int totalLength = originalLength + appendLength;
    
    		target = Arrays.copyOf(target, totalLength);
    
    		System.arraycopy(append, 0, target, originalLength, appendLength);
    
    		return target;
    	}
    	
    	/**
    	 * 验证测试
    	 */
    	private static void verifiTest(){
    		
    		short s = 1111;
    		int i = 2222;
    		long l = 333333;
    		char c = 'c';
    		float f = 444.44f;
    		double d = 555.55;
    		String string = "测试字符串666";
    
    		System.out.println(s);
    		System.out.println(i);
    		System.out.println(l);
    		System.out.println(c);
    		System.out.println(f);
    		System.out.println(d);
    		System.out.println(string);
    
    		System.out.println("**************");
    
    		System.out.println(getShort(getShortBytes(s)));
    		System.out.println(getInt(getIntBytes(i)));
    		System.out.println(getLong(getLongBytes(l)));
    		System.out.println(getChar(getCharBytes(c)));
    		System.out.println(getFloat(getFloatBytes(f)));
    		System.out.println(getDouble(getDoubleBytes(d)));
    		System.out.println(getString(getStringBytes(string)));
    		
    	}
    	
    	private static void bufferTest(){
    		
    		long a = 4648097885297469030l;
    		
    		ByteBuffer buf = ByteBuffer.allocate(8);
    		buf.order(ByteOrder.LITTLE_ENDIAN);
    		buf.putLong(a);
    		
    		byte[] bufByte = buf.array();
    		
    		byte[] bytes = getLongBytes(a);
    		
    		long ba = getLong(bytes);
    		
    		System.out.println(bufByte.equals(ba));
    		
    		System.out.println(ba);
    		
    	}
    
    	public static void main(String[] args) {
    
    		verifiTest();
    		
    		bufferTest();
    		
    		
    		System.out.println("finished ... ");
    	}
    }
    


    3. hbase 包中也有一个 Bytes 工具类很好用,但是 hbase 依赖很多东西,所以我将 hbase 的 Bytes 工具类提取出来,可以实现大端小段自适应,但是效率上比不上上面的方法,并且初始化很慢,不推荐该方法,但是在此将他放上来

    源代码:

    package com.ysq.util;
    
    import java.lang.reflect.Field;
    import java.lang.reflect.Method;
    import java.math.BigDecimal;
    import java.math.BigInteger;
    import java.nio.ByteBuffer;
    import java.nio.ByteOrder;
    import java.nio.charset.Charset;
    import java.security.AccessController;
    import java.security.PrivilegedAction;
    import java.util.Iterator;
    import java.util.logging.Level;
    import java.util.logging.Logger;
    import sun.misc.Unsafe;
    import com.ysq.util.BytesUtil.LexicographicalComparerHolder.UnsafeComparer;
    
    /**
     * Utility class that handles byte arrays, conversions to/from other types,
     * comparisons, hash code generation, manufacturing keys for HashMaps or
     * HashSets, etc.
     */
    @SuppressWarnings("restriction")
    public class BytesUtil {
    	static Logger logger = Logger.getLogger(BytesUtil.class.getName());
    
    	// HConstants.UTF8_ENCODING should be updated if this changed
    	/** When we encode strings, we always specify UTF8 encoding */
    	private static final String UTF8_ENCODING = "UTF-8";
    
    	// HConstants.UTF8_CHARSET should be updated if this changed
    	/** When we encode strings, we always specify UTF8 encoding */
    	private static final Charset UTF8_CHARSET = Charset.forName(UTF8_ENCODING);
    
    	// HConstants.EMPTY_BYTE_ARRAY should be updated if this changed
    	private static final byte[] EMPTY_BYTE_ARRAY = new byte[0];
    
    	// private static final Log LOG = LogFactory.getLog(Bytes.class);
    
    	/**
    	 * Size of boolean in bytes
    	 */
    	public static final int SIZEOF_BOOLEAN = Byte.SIZE / Byte.SIZE;
    
    	/**
    	 * Size of int in bytes
    	 */
    	public static final int SIZEOF_INT = Integer.SIZE / Byte.SIZE;
    
    	/**
    	 * Size of long in bytes
    	 */
    	public static final int SIZEOF_LONG = Long.SIZE / Byte.SIZE;
    
    	/**
    	 * Size of short in bytes
    	 */
    	public static final int SIZEOF_SHORT = Short.SIZE / Byte.SIZE;
    
    	private static final boolean UNSAFE_UNALIGNED = UnsafeAvailChecker.unaligned();
    
    	/**
    	 * Returns length of the byte array, returning 0 if the array is null.
    	 * Useful for calculating sizes.
    	 * 
    	 * @param b
    	 *            byte array, which can be null
    	 * @return 0 if b is null, otherwise returns length
    	 */
    	final public static int len(byte[] b) {
    		return b == null ? 0 : b.length;
    	}
    
    	/**
    	 * Put bytes at the specified byte array position.
    	 * 
    	 * @param tgtBytes
    	 *            the byte array
    	 * @param tgtOffset
    	 *            position in the array
    	 * @param srcBytes
    	 *            array to write out
    	 * @param srcOffset
    	 *            source offset
    	 * @param srcLength
    	 *            source length
    	 * @return incremented offset
    	 */
    	public static int putBytes(byte[] tgtBytes, int tgtOffset, byte[] srcBytes, int srcOffset, int srcLength) {
    		System.arraycopy(srcBytes, srcOffset, tgtBytes, tgtOffset, srcLength);
    		return tgtOffset + srcLength;
    	}
    
    	/**
    	 * Write a single byte out to the specified byte array position.
    	 * 
    	 * @param bytes
    	 *            the byte array
    	 * @param offset
    	 *            position in the array
    	 * @param b
    	 *            byte to write out
    	 * @return incremented offset
    	 */
    	public static int putByte(byte[] bytes, int offset, byte b) {
    		bytes[offset] = b;
    		return offset + 1;
    	}
    
    	/**
    	 * Add the whole content of the ByteBuffer to the bytes arrays. The
    	 * ByteBuffer is modified.
    	 * 
    	 * @param bytes
    	 *            the byte array
    	 * @param offset
    	 *            position in the array
    	 * @param buf
    	 *            ByteBuffer to write out
    	 * @return incremented offset
    	 */
    	public static int putByteBuffer(byte[] bytes, int offset, ByteBuffer buf) {
    		int len = buf.remaining();
    		buf.get(bytes, offset, len);
    		return offset + len;
    	}
    
    	/**
    	 * Returns a new byte array, copied from the given {@code buf}, from the
    	 * index 0 (inclusive) to the limit (exclusive), regardless of the current
    	 * position. The position and the other index parameters are not changed.
    	 *
    	 * @param buf
    	 *            a byte buffer
    	 * @return the byte array
    	 * @see #getBytes(ByteBuffer)
    	 */
    	public static byte[] toBytes(ByteBuffer buf) {
    		ByteBuffer dup = buf.duplicate();
    		dup.position(0);
    		return readBytes(dup);
    	}
    
    	private static byte[] readBytes(ByteBuffer buf) {
    		byte[] result = new byte[buf.remaining()];
    		buf.get(result);
    		return result;
    	}
    
    	/**
    	 * @param b
    	 *            Presumed UTF-8 encoded byte array.
    	 * @return String made from <code>b</code>
    	 */
    	public static String toString(final byte[] b) {
    		if (b == null) {
    			return null;
    		}
    		return toString(b, 0, b.length);
    	}
    
    	/**
    	 * Joins two byte arrays together using a separator.
    	 * 
    	 * @param b1
    	 *            The first byte array.
    	 * @param sep
    	 *            The separator to use.
    	 * @param b2
    	 *            The second byte array.
    	 */
    	public static String toString(final byte[] b1, String sep, final byte[] b2) {
    		return toString(b1, 0, b1.length) + sep + toString(b2, 0, b2.length);
    	}
    
    	/**
    	 * This method will convert utf8 encoded bytes into a string. If the given
    	 * byte array is null, this method will return null.
    	 * 
    	 * @param b
    	 *            Presumed UTF-8 encoded byte array.
    	 * @param off
    	 *            offset into array
    	 * @return String made from <code>b</code> or null
    	 */
    	public static String toString(final byte[] b, int off) {
    		if (b == null) {
    			return null;
    		}
    		int len = b.length - off;
    		if (len <= 0) {
    			return "";
    		}
    		return new String(b, off, len, UTF8_CHARSET);
    	}
    
    	/**
    	 * This method will convert utf8 encoded bytes into a string. If the given
    	 * byte array is null, this method will return null.
    	 *
    	 * @param b
    	 *            Presumed UTF-8 encoded byte array.
    	 * @param off
    	 *            offset into array
    	 * @param len
    	 *            length of utf-8 sequence
    	 * @return String made from <code>b</code> or null
    	 */
    	public static String toString(final byte[] b, int off, int len) {
    		if (b == null) {
    			return null;
    		}
    		if (len == 0) {
    			return "";
    		}
    		return new String(b, off, len, UTF8_CHARSET);
    	}
    
    	/**
    	 * Write a printable representation of a byte array.
    	 *
    	 * @param b
    	 *            byte array
    	 * @return string
    	 * @see #toStringBinary(byte[], int, int)
    	 */
    	public static String toStringBinary(final byte[] b) {
    		if (b == null)
    			return "null";
    		return toStringBinary(b, 0, b.length);
    	}
    
    	/**
    	 * Converts the given byte buffer to a printable representation, from the
    	 * index 0 (inclusive) to the limit (exclusive), regardless of the current
    	 * position. The position and the other index parameters are not changed.
    	 *
    	 * @param buf
    	 *            a byte buffer
    	 * @return a string representation of the buffer's binary contents
    	 * @see #toBytes(ByteBuffer)
    	 * @see #getBytes(ByteBuffer)
    	 */
    	public static String toStringBinary(ByteBuffer buf) {
    		if (buf == null)
    			return "null";
    		if (buf.hasArray()) {
    			return toStringBinary(buf.array(), buf.arrayOffset(), buf.limit());
    		}
    		return toStringBinary(toBytes(buf));
    	}
    
    	/**
    	 * Write a printable representation of a byte array. Non-printable
    	 * characters are hex escaped in the format \x%02X, eg: x00 x05 etc
    	 *
    	 * @param b
    	 *            array to write out
    	 * @param off
    	 *            offset to start at
    	 * @param len
    	 *            length to write
    	 * @return string output
    	 */
    	public static String toStringBinary(final byte[] b, int off, int len) {
    		StringBuilder result = new StringBuilder();
    		// Just in case we are passed a 'len' that is > buffer length...
    		if (off >= b.length)
    			return result.toString();
    		if (off + len > b.length)
    			len = b.length - off;
    		for (int i = off; i < off + len; ++i) {
    			int ch = b[i] & 0xFF;
    			if ((ch >= '0' && ch <= '9') || (ch >= 'A' && ch <= 'Z') || (ch >= 'a' && ch <= 'z')
    					|| " `~!@#$%^&*()-_=+[]{}|;:'",.<>/?".indexOf(ch) >= 0) {
    				result.append((char) ch);
    			} else {
    				result.append(String.format("\x%02X", ch));
    			}
    		}
    		return result.toString();
    	}
    
    	private static boolean isHexDigit(char c) {
    		return (c >= 'A' && c <= 'F') || (c >= '0' && c <= '9');
    	}
    
    	/**
    	 * Takes a ASCII digit in the range A-F0-9 and returns the corresponding
    	 * integer/ordinal value.
    	 * 
    	 * @param ch
    	 *            The hex digit.
    	 * @return The converted hex value as a byte.
    	 */
    	public static byte toBinaryFromHex(byte ch) {
    		if (ch >= 'A' && ch <= 'F')
    			return (byte) ((byte) 10 + (byte) (ch - 'A'));
    		// else
    		return (byte) (ch - '0');
    	}
    
    	public static byte[] toBytesBinary(String in) {
    		// this may be bigger than we need, but let's be safe.
    		byte[] b = new byte[in.length()];
    		int size = 0;
    		for (int i = 0; i < in.length(); ++i) {
    			char ch = in.charAt(i);
    			if (ch == '\' && in.length() > i + 1 && in.charAt(i + 1) == 'x') {
    				// ok, take next 2 hex digits.
    				char hd1 = in.charAt(i + 2);
    				char hd2 = in.charAt(i + 3);
    
    				// they need to be A-F0-9:
    				if (!isHexDigit(hd1) || !isHexDigit(hd2)) {
    					// bogus escape code, ignore:
    					continue;
    				}
    				// turn hex ASCII digit -> number
    				byte d = (byte) ((toBinaryFromHex((byte) hd1) << 4) + toBinaryFromHex((byte) hd2));
    
    				b[size++] = d;
    				i += 3; // skip 3
    			} else {
    				b[size++] = (byte) ch;
    			}
    		}
    		// resize:
    		byte[] b2 = new byte[size];
    		System.arraycopy(b, 0, b2, 0, size);
    		return b2;
    	}
    
    	/**
    	 * Converts a string to a UTF-8 byte array.
    	 * 
    	 * @param s
    	 *            string
    	 * @return the byte array
    	 */
    	public static byte[] toBytes(String s) {
    		return s.getBytes(UTF8_CHARSET);
    	}
    
    	/**
    	 * Convert a boolean to a byte array. True becomes -1 and false becomes 0.
    	 *
    	 * @param b
    	 *            value
    	 * @return <code>b</code> encoded in a byte array.
    	 */
    	public static byte[] toBytes(final boolean b) {
    		return new byte[] { b ? (byte) -1 : (byte) 0 };
    	}
    
    	/**
    	 * Reverses {@link #toBytes(boolean)}
    	 * 
    	 * @param b
    	 *            array
    	 * @return True or false.
    	 */
    	public static boolean toBoolean(final byte[] b) {
    		if (b.length != 1) {
    			throw new IllegalArgumentException("Array has wrong size: " + b.length);
    		}
    		return b[0] != (byte) 0;
    	}
    
    	/**
    	 * Convert a long value to a byte array using big-endian.
    	 *
    	 * @param val
    	 *            value to convert
    	 * @return the byte array
    	 */
    	public static byte[] toBytes(long val) {
    		byte[] b = new byte[8];
    		for (int i = 7; i > 0; i--) {
    			b[i] = (byte) val;
    			val >>>= 8;
    		}
    		b[0] = (byte) val;
    		return b;
    	}
    
    	/**
    	 * Converts a byte array to a long value. Reverses {@link #toBytes(long)}
    	 * 
    	 * @param bytes
    	 *            array
    	 * @return the long value
    	 */
    	public static long toLong(byte[] bytes) {
    		return toLong(bytes, 0, SIZEOF_LONG);
    	}
    
    	/**
    	 * Converts a byte array to a long value. Assumes there will be
    	 * {@link #SIZEOF_LONG} bytes available.
    	 *
    	 * @param bytes
    	 *            bytes
    	 * @param offset
    	 *            offset
    	 * @return the long value
    	 */
    	public static long toLong(byte[] bytes, int offset) {
    		return toLong(bytes, offset, SIZEOF_LONG);
    	}
    
    	/**
    	 * Converts a byte array to a long value.
    	 *
    	 * @param bytes
    	 *            array of bytes
    	 * @param offset
    	 *            offset into array
    	 * @param length
    	 *            length of data (must be {@link #SIZEOF_LONG})
    	 * @return the long value
    	 * @throws IllegalArgumentException
    	 *             if length is not {@link #SIZEOF_LONG} or if there's not
    	 *             enough room in the array at the offset indicated.
    	 */
    	public static long toLong(byte[] bytes, int offset, final int length) {
    		if (length != SIZEOF_LONG || offset + length > bytes.length) {
    			throw explainWrongLengthOrOffset(bytes, offset, length, SIZEOF_LONG);
    		}
    		if (UNSAFE_UNALIGNED) {
    			return toLongUnsafe(bytes, offset);
    		} else {
    			long l = 0;
    			for (int i = offset; i < offset + length; i++) {
    				l <<= 8;
    				l ^= bytes[i] & 0xFF;
    			}
    			return l;
    		}
    	}
    
    	private static IllegalArgumentException explainWrongLengthOrOffset(final byte[] bytes, final int offset,
    			final int length, final int expectedLength) {
    		String reason;
    		if (length != expectedLength) {
    			reason = "Wrong length: " + length + ", expected " + expectedLength;
    		} else {
    			reason = "offset (" + offset + ") + length (" + length + ") exceed the" + " capacity of the array: "
    					+ bytes.length;
    		}
    		return new IllegalArgumentException(reason);
    	}
    
    	/**
    	 * Presumes float encoded as IEEE 754 floating-point "single format"
    	 * 
    	 * @param bytes
    	 *            byte array
    	 * @return Float made from passed byte array.
    	 */
    	public static float toFloat(byte[] bytes) {
    		return toFloat(bytes, 0);
    	}
    
    	/**
    	 * Presumes float encoded as IEEE 754 floating-point "single format"
    	 * 
    	 * @param bytes
    	 *            array to convert
    	 * @param offset
    	 *            offset into array
    	 * @return Float made from passed byte array.
    	 */
    	public static float toFloat(byte[] bytes, int offset) {
    		int ti = toInt(bytes, offset, SIZEOF_INT);
    
    		return Float.intBitsToFloat(ti);
    	}
    
    	/**
    	 * @param bytes
    	 *            byte array
    	 * @param offset
    	 *            offset to write to
    	 * @param f
    	 *            float value
    	 * @return New offset in <code>bytes</code>
    	 */
    	public static int putFloat(byte[] bytes, int offset, float f) {
    		return putInt(bytes, offset, Float.floatToRawIntBits(f));
    	}
    
    	/**
    	 * @param f
    	 *            float value
    	 * @return the float represented as byte []
    	 */
    	public static byte[] toBytes(final float f) {
    		// Encode it as int
    		return toBytes(Float.floatToRawIntBits(f));
    	}
    
    	/**
    	 * @param bytes
    	 *            byte array
    	 * @return Return double made from passed bytes.
    	 */
    	public static double toDouble(final byte[] bytes) {
    		return toDouble(bytes, 0);
    	}
    
    	/**
    	 * @param bytes
    	 *            byte array
    	 * @param offset
    	 *            offset where double is
    	 * @return Return double made from passed bytes.
    	 */
    	public static double toDouble(final byte[] bytes, final int offset) {
    		return Double.longBitsToDouble(toLong(bytes, offset, SIZEOF_LONG));
    	}
    
    	/**
    	 * Serialize a double as the IEEE 754 double format output. The resultant
    	 * array will be 8 bytes long.
    	 *
    	 * @param d
    	 *            value
    	 * @return the double represented as byte []
    	 */
    	public static byte[] toBytes(final double d) {
    		// Encode it as a long
    		return toBytes(Double.doubleToRawLongBits(d));
    	}
    
    	/**
    	 * Convert an int value to a byte array. Big-endian. Same as what
    	 * DataOutputStream.writeInt does.
    	 *
    	 * @param val
    	 *            value
    	 * @return the byte array
    	 */
    	public static byte[] toBytes(int val) {
    		byte[] b = new byte[4];
    		for (int i = 3; i > 0; i--) {
    			b[i] = (byte) val;
    			val >>>= 8;
    		}
    		b[0] = (byte) val;
    		return b;
    	}
    
    	/**
    	 * Converts a byte array to an int value
    	 * 
    	 * @param bytes
    	 *            byte array
    	 * @return the int value
    	 */
    	public static int toInt(byte[] bytes) {
    		return toInt(bytes, 0, SIZEOF_INT);
    	}
    
    	/**
    	 * Converts a byte array to an int value
    	 * 
    	 * @param bytes
    	 *            byte array
    	 * @param offset
    	 *            offset into array
    	 * @return the int value
    	 */
    	public static int toInt(byte[] bytes, int offset) {
    		return toInt(bytes, offset, SIZEOF_INT);
    	}
    
    	/**
    	 * Converts a byte array to an int value
    	 * 
    	 * @param bytes
    	 *            byte array
    	 * @param offset
    	 *            offset into array
    	 * @param length
    	 *            length of int (has to be {@link #SIZEOF_INT})
    	 * @return the int value
    	 * @throws IllegalArgumentException
    	 *             if length is not {@link #SIZEOF_INT} or if there's not enough
    	 *             room in the array at the offset indicated.
    	 */
    	public static int toInt(byte[] bytes, int offset, final int length) {
    		if (length != SIZEOF_INT || offset + length > bytes.length) {
    			throw explainWrongLengthOrOffset(bytes, offset, length, SIZEOF_INT);
    		}
    		if (UNSAFE_UNALIGNED) {
    			return toIntUnsafe(bytes, offset);
    		} else {
    			int n = 0;
    			for (int i = offset; i < (offset + length); i++) {
    				n <<= 8;
    				n ^= bytes[i] & 0xFF;
    			}
    			return n;
    		}
    	}
    
    	/**
    	 * Converts a byte array to an int value (Unsafe version)
    	 * 
    	 * @param bytes
    	 *            byte array
    	 * @param offset
    	 *            offset into array
    	 * @return the int value
    	 */
    	public static int toIntUnsafe(byte[] bytes, int offset) {
    		if (UnsafeComparer.littleEndian) {
    			return Integer.reverseBytes(
    					UnsafeComparer.theUnsafe.getInt(bytes, (long) offset + UnsafeComparer.BYTE_ARRAY_BASE_OFFSET));
    		} else {
    			return UnsafeComparer.theUnsafe.getInt(bytes, (long) offset + UnsafeComparer.BYTE_ARRAY_BASE_OFFSET);
    		}
    	}
    
    	/**
    	 * Converts a byte array to an short value (Unsafe version)
    	 * 
    	 * @param bytes
    	 *            byte array
    	 * @param offset
    	 *            offset into array
    	 * @return the short value
    	 */
    	public static short toShortUnsafe(byte[] bytes, int offset) {
    		if (UnsafeComparer.littleEndian) {
    			return Short.reverseBytes(
    					UnsafeComparer.theUnsafe.getShort(bytes, (long) offset + UnsafeComparer.BYTE_ARRAY_BASE_OFFSET));
    		} else {
    			return UnsafeComparer.theUnsafe.getShort(bytes, (long) offset + UnsafeComparer.BYTE_ARRAY_BASE_OFFSET);
    		}
    	}
    
    	/**
    	 * Converts a byte array to an long value (Unsafe version)
    	 * 
    	 * @param bytes
    	 *            byte array
    	 * @param offset
    	 *            offset into array
    	 * @return the long value
    	 */
    	public static long toLongUnsafe(byte[] bytes, int offset) {
    		if (UnsafeComparer.littleEndian) {
    			return Long.reverseBytes(
    					UnsafeComparer.theUnsafe.getLong(bytes, (long) offset + UnsafeComparer.BYTE_ARRAY_BASE_OFFSET));
    		} else {
    			return UnsafeComparer.theUnsafe.getLong(bytes, (long) offset + UnsafeComparer.BYTE_ARRAY_BASE_OFFSET);
    		}
    	}
    
    	/**
    	 * Converts a byte array to an int value
    	 * 
    	 * @param bytes
    	 *            byte array
    	 * @param offset
    	 *            offset into array
    	 * @param length
    	 *            how many bytes should be considered for creating int
    	 * @return the int value
    	 * @throws IllegalArgumentException
    	 *             if there's not enough room in the array at the offset
    	 *             indicated.
    	 */
    	public static int readAsInt(byte[] bytes, int offset, final int length) {
    		if (offset + length > bytes.length) {
    			throw new IllegalArgumentException("offset (" + offset + ") + length (" + length + ") exceed the"
    					+ " capacity of the array: " + bytes.length);
    		}
    		int n = 0;
    		for (int i = offset; i < (offset + length); i++) {
    			n <<= 8;
    			n ^= bytes[i] & 0xFF;
    		}
    		return n;
    	}
    
    	/**
    	 * Put an int value out to the specified byte array position.
    	 * 
    	 * @param bytes
    	 *            the byte array
    	 * @param offset
    	 *            position in the array
    	 * @param val
    	 *            int to write out
    	 * @return incremented offset
    	 * @throws IllegalArgumentException
    	 *             if the byte array given doesn't have enough room at the
    	 *             offset specified.
    	 */
    	public static int putInt(byte[] bytes, int offset, int val) {
    		if (bytes.length - offset < SIZEOF_INT) {
    			throw new IllegalArgumentException(
    					"Not enough room to put an int at" + " offset " + offset + " in a " + bytes.length + " byte array");
    		}
    		if (UNSAFE_UNALIGNED) {
    			return putIntUnsafe(bytes, offset, val);
    		} else {
    			for (int i = offset + 3; i > offset; i--) {
    				bytes[i] = (byte) val;
    				val >>>= 8;
    			}
    			bytes[offset] = (byte) val;
    			return offset + SIZEOF_INT;
    		}
    	}
    
    	/**
    	 * Put an int value out to the specified byte array position (Unsafe).
    	 * 
    	 * @param bytes
    	 *            the byte array
    	 * @param offset
    	 *            position in the array
    	 * @param val
    	 *            int to write out
    	 * @return incremented offset
    	 */
    	public static int putIntUnsafe(byte[] bytes, int offset, int val) {
    		if (UnsafeComparer.littleEndian) {
    			val = Integer.reverseBytes(val);
    		}
    		UnsafeComparer.theUnsafe.putInt(bytes, (long) offset + UnsafeComparer.BYTE_ARRAY_BASE_OFFSET, val);
    		return offset + SIZEOF_INT;
    	}
    
    	/**
    	 * Convert a short value to a byte array of {@link #SIZEOF_SHORT} bytes
    	 * long.
    	 * 
    	 * @param val
    	 *            value
    	 * @return the byte array
    	 */
    	public static byte[] toBytes(short val) {
    		byte[] b = new byte[SIZEOF_SHORT];
    		b[1] = (byte) val;
    		val >>= 8;
    		b[0] = (byte) val;
    		return b;
    	}
    
    	/**
    	 * Converts a byte array to a short value
    	 * 
    	 * @param bytes
    	 *            byte array
    	 * @return the short value
    	 */
    	public static short toShort(byte[] bytes) {
    		return toShort(bytes, 0, SIZEOF_SHORT);
    	}
    
    	/**
    	 * Converts a byte array to a short value
    	 * 
    	 * @param bytes
    	 *            byte array
    	 * @param offset
    	 *            offset into array
    	 * @return the short value
    	 */
    	public static short toShort(byte[] bytes, int offset) {
    		return toShort(bytes, offset, SIZEOF_SHORT);
    	}
    
    	/**
    	 * Converts a byte array to a short value
    	 * 
    	 * @param bytes
    	 *            byte array
    	 * @param offset
    	 *            offset into array
    	 * @param length
    	 *            length, has to be {@link #SIZEOF_SHORT}
    	 * @return the short value
    	 * @throws IllegalArgumentException
    	 *             if length is not {@link #SIZEOF_SHORT} or if there's not
    	 *             enough room in the array at the offset indicated.
    	 */
    	public static short toShort(byte[] bytes, int offset, final int length) {
    		if (length != SIZEOF_SHORT || offset + length > bytes.length) {
    			throw explainWrongLengthOrOffset(bytes, offset, length, SIZEOF_SHORT);
    		}
    		if (UNSAFE_UNALIGNED) {
    			return toShortUnsafe(bytes, offset);
    		} else {
    			short n = 0;
    			n ^= bytes[offset] & 0xFF;
    			n <<= 8;
    			n ^= bytes[offset + 1] & 0xFF;
    			return n;
    		}
    	}
    
    	/**
    	 * Returns a new byte array, copied from the given {@code buf}, from the
    	 * position (inclusive) to the limit (exclusive). The position and the other
    	 * index parameters are not changed.
    	 *
    	 * @param buf
    	 *            a byte buffer
    	 * @return the byte array
    	 * @see #toBytes(ByteBuffer)
    	 */
    	public static byte[] getBytes(ByteBuffer buf) {
    		return readBytes(buf.duplicate());
    	}
    
    	/**
    	 * Put a short value out to the specified byte array position.
    	 * 
    	 * @param bytes
    	 *            the byte array
    	 * @param offset
    	 *            position in the array
    	 * @param val
    	 *            short to write out
    	 * @return incremented offset
    	 * @throws IllegalArgumentException
    	 *             if the byte array given doesn't have enough room at the
    	 *             offset specified.
    	 */
    	public static int putShort(byte[] bytes, int offset, short val) {
    		if (bytes.length - offset < SIZEOF_SHORT) {
    			throw new IllegalArgumentException("Not enough room to put a short at" + " offset " + offset + " in a "
    					+ bytes.length + " byte array");
    		}
    		if (UNSAFE_UNALIGNED) {
    			return putShortUnsafe(bytes, offset, val);
    		} else {
    			bytes[offset + 1] = (byte) val;
    			val >>= 8;
    			bytes[offset] = (byte) val;
    			return offset + SIZEOF_SHORT;
    		}
    	}
    
    	/**
    	 * Put a short value out to the specified byte array position (Unsafe).
    	 * 
    	 * @param bytes
    	 *            the byte array
    	 * @param offset
    	 *            position in the array
    	 * @param val
    	 *            short to write out
    	 * @return incremented offset
    	 */
    	public static int putShortUnsafe(byte[] bytes, int offset, short val) {
    		if (UnsafeComparer.littleEndian) {
    			val = Short.reverseBytes(val);
    		}
    		UnsafeComparer.theUnsafe.putShort(bytes, (long) offset + UnsafeComparer.BYTE_ARRAY_BASE_OFFSET, val);
    		return offset + SIZEOF_SHORT;
    	}
    
    	/**
    	 * Put an int value as short out to the specified byte array position. Only
    	 * the lower 2 bytes of the short will be put into the array. The caller of
    	 * the API need to make sure they will not loose the value by doing so. This
    	 * is useful to store an unsigned short which is represented as int in other
    	 * parts.
    	 * 
    	 * @param bytes
    	 *            the byte array
    	 * @param offset
    	 *            position in the array
    	 * @param val
    	 *            value to write out
    	 * @return incremented offset
    	 * @throws IllegalArgumentException
    	 *             if the byte array given doesn't have enough room at the
    	 *             offset specified.
    	 */
    	public static int putAsShort(byte[] bytes, int offset, int val) {
    		if (bytes.length - offset < SIZEOF_SHORT) {
    			throw new IllegalArgumentException("Not enough room to put a short at" + " offset " + offset + " in a "
    					+ bytes.length + " byte array");
    		}
    		bytes[offset + 1] = (byte) val;
    		val >>= 8;
    		bytes[offset] = (byte) val;
    		return offset + SIZEOF_SHORT;
    	}
    
    	/**
    	 * Convert a BigDecimal value to a byte array
    	 *
    	 * @param val
    	 * @return the byte array
    	 */
    	public static byte[] toBytes(BigDecimal val) {
    		byte[] valueBytes = val.unscaledValue().toByteArray();
    		byte[] result = new byte[valueBytes.length + SIZEOF_INT];
    		int offset = putInt(result, 0, val.scale());
    		putBytes(result, offset, valueBytes, 0, valueBytes.length);
    		return result;
    	}
    
    	/**
    	 * Converts a byte array to a BigDecimal
    	 *
    	 * @param bytes
    	 * @return the char value
    	 */
    	public static BigDecimal toBigDecimal(byte[] bytes) {
    		return toBigDecimal(bytes, 0, bytes.length);
    	}
    
    	/**
    	 * Converts a byte array to a BigDecimal value
    	 *
    	 * @param bytes
    	 * @param offset
    	 * @param length
    	 * @return the char value
    	 */
    	public static BigDecimal toBigDecimal(byte[] bytes, int offset, final int length) {
    		if (bytes == null || length < SIZEOF_INT + 1 || (offset + length > bytes.length)) {
    			return null;
    		}
    
    		int scale = toInt(bytes, offset);
    		byte[] tcBytes = new byte[length - SIZEOF_INT];
    		System.arraycopy(bytes, offset + SIZEOF_INT, tcBytes, 0, length - SIZEOF_INT);
    		return new BigDecimal(new BigInteger(tcBytes), scale);
    	}
    
    	/**
    	 * Put a BigDecimal value out to the specified byte array position.
    	 *
    	 * @param bytes
    	 *            the byte array
    	 * @param offset
    	 *            position in the array
    	 * @param val
    	 *            BigDecimal to write out
    	 * @return incremented offset
    	 */
    	public static int putBigDecimal(byte[] bytes, int offset, BigDecimal val) {
    		if (bytes == null) {
    			return offset;
    		}
    
    		byte[] valueBytes = val.unscaledValue().toByteArray();
    		byte[] result = new byte[valueBytes.length + SIZEOF_INT];
    		offset = putInt(result, offset, val.scale());
    		return putBytes(result, offset, valueBytes, 0, valueBytes.length);
    	}
    
    	/**
    	 * @param left
    	 *            left operand
    	 * @param right
    	 *            right operand
    	 * @return 0 if equal, < 0 if left is less than right, etc.
    	 */
    	public static int compareTo(final byte[] left, final byte[] right) {
    		return LexicographicalComparerHolder.BEST_COMPARER.compareTo(left, 0, left.length, right, 0, right.length);
    	}
    
    	/**
    	 * Lexicographically compare two arrays.
    	 *
    	 * @param buffer1
    	 *            left operand
    	 * @param buffer2
    	 *            right operand
    	 * @param offset1
    	 *            Where to start comparing in the left buffer
    	 * @param offset2
    	 *            Where to start comparing in the right buffer
    	 * @param length1
    	 *            How much to compare from the left buffer
    	 * @param length2
    	 *            How much to compare from the right buffer
    	 * @return 0 if equal, < 0 if left is less than right, etc.
    	 */
    	public static int compareTo(byte[] buffer1, int offset1, int length1, byte[] buffer2, int offset2, int length2) {
    		return LexicographicalComparerHolder.BEST_COMPARER.compareTo(buffer1, offset1, length1, buffer2, offset2,
    				length2);
    	}
    
    	interface Comparer<T> {
    		int compareTo(T buffer1, int offset1, int length1, T buffer2, int offset2, int length2);
    	}
    
    	static Comparer<byte[]> lexicographicalComparerJavaImpl() {
    		return LexicographicalComparerHolder.PureJavaComparer.INSTANCE;
    	}
    
    	/**
    	 * Provides a lexicographical comparer implementation; either a Java
    	 * implementation or a faster implementation based on {@link Unsafe}.
    	 *
    	 * <p>
    	 * Uses reflection to gracefully fall back to the Java implementation if
    	 * {@code Unsafe} isn't available.
    	 */
    	static class LexicographicalComparerHolder {
    		static final String UNSAFE_COMPARER_NAME = LexicographicalComparerHolder.class.getName() + "$UnsafeComparer";
    
    		static final Comparer<byte[]> BEST_COMPARER = getBestComparer();
    
    		/**
    		 * Returns the Unsafe-using Comparer, or falls back to the pure-Java
    		 * implementation if unable to do so.
    		 */
    		static Comparer<byte[]> getBestComparer() {
    			try {
    				Class<?> theClass = Class.forName(UNSAFE_COMPARER_NAME);
    
    				// yes, UnsafeComparer does implement Comparer<byte[]>
    				@SuppressWarnings("unchecked")
    				Comparer<byte[]> comparer = (Comparer<byte[]>) theClass.getEnumConstants()[0];
    				return comparer;
    			} catch (Throwable t) { // ensure we really catch *everything*
    				return lexicographicalComparerJavaImpl();
    			}
    		}
    
    		enum PureJavaComparer implements Comparer<byte[]> {
    			INSTANCE;
    
    			@Override
    			public int compareTo(byte[] buffer1, int offset1, int length1, byte[] buffer2, int offset2, int length2) {
    				// Short circuit equal case
    				if (buffer1 == buffer2 && offset1 == offset2 && length1 == length2) {
    					return 0;
    				}
    				// Bring WritableComparator code local
    				int end1 = offset1 + length1;
    				int end2 = offset2 + length2;
    				for (int i = offset1, j = offset2; i < end1 && j < end2; i++, j++) {
    					int a = (buffer1[i] & 0xff);
    					int b = (buffer2[j] & 0xff);
    					if (a != b) {
    						return a - b;
    					}
    				}
    				return length1 - length2;
    			}
    		}
    
    		enum UnsafeComparer implements Comparer<byte[]> {
    			INSTANCE;
    
    			static final Unsafe theUnsafe;
    
    			/** The offset to the first element in a byte array. */
    			static final int BYTE_ARRAY_BASE_OFFSET;
    
    			static {
    				if (UNSAFE_UNALIGNED) {
    					theUnsafe = UnsafeAccess.theUnsafe;
    				} else {
    					// It doesn't matter what we throw;
    					// it's swallowed in getBestComparer().
    					throw new Error();
    				}
    
    				BYTE_ARRAY_BASE_OFFSET = theUnsafe.arrayBaseOffset(byte[].class);
    
    				// sanity check - this should never fail
    				if (theUnsafe.arrayIndexScale(byte[].class) != 1) {
    					throw new AssertionError();
    				}
    			}
    
    			static final boolean littleEndian = ByteOrder.nativeOrder().equals(ByteOrder.LITTLE_ENDIAN);
    
    			/**
    			 * Returns true if x1 is less than x2, when both values are treated
    			 * as unsigned long. Both values are passed as is read by Unsafe.
    			 * When platform is Little Endian, have to convert to corresponding
    			 * Big Endian value and then do compare. We do all writes in Big
    			 * Endian format.
    			 */
    			static boolean lessThanUnsignedLong(long x1, long x2) {
    				if (littleEndian) {
    					x1 = Long.reverseBytes(x1);
    					x2 = Long.reverseBytes(x2);
    				}
    				return (x1 + Long.MIN_VALUE) < (x2 + Long.MIN_VALUE);
    			}
    
    			/**
    			 * Returns true if x1 is less than x2, when both values are treated
    			 * as unsigned int. Both values are passed as is read by Unsafe.
    			 * When platform is Little Endian, have to convert to corresponding
    			 * Big Endian value and then do compare. We do all writes in Big
    			 * Endian format.
    			 */
    			static boolean lessThanUnsignedInt(int x1, int x2) {
    				if (littleEndian) {
    					x1 = Integer.reverseBytes(x1);
    					x2 = Integer.reverseBytes(x2);
    				}
    				return (x1 & 0xffffffffL) < (x2 & 0xffffffffL);
    			}
    
    			/**
    			 * Returns true if x1 is less than x2, when both values are treated
    			 * as unsigned short. Both values are passed as is read by Unsafe.
    			 * When platform is Little Endian, have to convert to corresponding
    			 * Big Endian value and then do compare. We do all writes in Big
    			 * Endian format.
    			 */
    			static boolean lessThanUnsignedShort(short x1, short x2) {
    				if (littleEndian) {
    					x1 = Short.reverseBytes(x1);
    					x2 = Short.reverseBytes(x2);
    				}
    				return (x1 & 0xffff) < (x2 & 0xffff);
    			}
    
    			/**
    			 * Checks if Unsafe is available
    			 * 
    			 * @return true, if available, false - otherwise
    			 */
    			public static boolean isAvailable() {
    				return theUnsafe != null;
    			}
    
    			/**
    			 * Lexicographically compare two arrays.
    			 *
    			 * @param buffer1
    			 *            left operand
    			 * @param buffer2
    			 *            right operand
    			 * @param offset1
    			 *            Where to start comparing in the left buffer
    			 * @param offset2
    			 *            Where to start comparing in the right buffer
    			 * @param length1
    			 *            How much to compare from the left buffer
    			 * @param length2
    			 *            How much to compare from the right buffer
    			 * @return 0 if equal, < 0 if left is less than right, etc.
    			 */
    			@Override
    			public int compareTo(byte[] buffer1, int offset1, int length1, byte[] buffer2, int offset2, int length2) {
    
    				// Short circuit equal case
    				if (buffer1 == buffer2 && offset1 == offset2 && length1 == length2) {
    					return 0;
    				}
    				final int minLength = Math.min(length1, length2);
    				final int minWords = minLength / SIZEOF_LONG;
    				final long offset1Adj = offset1 + BYTE_ARRAY_BASE_OFFSET;
    				final long offset2Adj = offset2 + BYTE_ARRAY_BASE_OFFSET;
    
    				/*
    				 * Compare 8 bytes at a time. Benchmarking shows comparing 8
    				 * bytes at a time is no slower than comparing 4 bytes at a time
    				 * even on 32-bit. On the other hand, it is substantially faster
    				 * on 64-bit.
    				 */
    				// This is the end offset of long parts.
    				int j = minWords << 3; // Same as minWords * SIZEOF_LONG
    				for (int i = 0; i < j; i += SIZEOF_LONG) {
    					long lw = theUnsafe.getLong(buffer1, offset1Adj + (long) i);
    					long rw = theUnsafe.getLong(buffer2, offset2Adj + (long) i);
    					long diff = lw ^ rw;
    					if (diff != 0) {
    						return lessThanUnsignedLong(lw, rw) ? -1 : 1;
    					}
    				}
    				int offset = j;
    
    				if (minLength - offset >= SIZEOF_INT) {
    					int il = theUnsafe.getInt(buffer1, offset1Adj + offset);
    					int ir = theUnsafe.getInt(buffer2, offset2Adj + offset);
    					if (il != ir) {
    						return lessThanUnsignedInt(il, ir) ? -1 : 1;
    					}
    					offset += SIZEOF_INT;
    				}
    				if (minLength - offset >= SIZEOF_SHORT) {
    					short sl = theUnsafe.getShort(buffer1, offset1Adj + offset);
    					short sr = theUnsafe.getShort(buffer2, offset2Adj + offset);
    					if (sl != sr) {
    						return lessThanUnsignedShort(sl, sr) ? -1 : 1;
    					}
    					offset += SIZEOF_SHORT;
    				}
    				if (minLength - offset == 1) {
    					int a = (buffer1[(int) (offset1 + offset)] & 0xff);
    					int b = (buffer2[(int) (offset2 + offset)] & 0xff);
    					if (a != b) {
    						return a - b;
    					}
    				}
    				return length1 - length2;
    			}
    		}
    	}
    
    	/**
    	 * @param left
    	 *            left operand
    	 * @param right
    	 *            right operand
    	 * @return True if equal
    	 */
    	public static boolean equals(final byte[] left, final byte[] right) {
    		// Could use Arrays.equals?
    		// noinspection SimplifiableConditionalExpression
    		if (left == right)
    			return true;
    		if (left == null || right == null)
    			return false;
    		if (left.length != right.length)
    			return false;
    		if (left.length == 0)
    			return true;
    
    		// Since we're often comparing adjacent sorted data,
    		// it's usual to have equal arrays except for the very last byte
    		// so check that first
    		if (left[left.length - 1] != right[right.length - 1])
    			return false;
    
    		return compareTo(left, right) == 0;
    	}
    
    	public static boolean equals(final byte[] left, int leftOffset, int leftLen, final byte[] right, int rightOffset,
    			int rightLen) {
    		// short circuit case
    		if (left == right && leftOffset == rightOffset && leftLen == rightLen) {
    			return true;
    		}
    		// different lengths fast check
    		if (leftLen != rightLen) {
    			return false;
    		}
    		if (leftLen == 0) {
    			return true;
    		}
    
    		// Since we're often comparing adjacent sorted data,
    		// it's usual to have equal arrays except for the very last byte
    		// so check that first
    		if (left[leftOffset + leftLen - 1] != right[rightOffset + rightLen - 1])
    			return false;
    
    		return LexicographicalComparerHolder.BEST_COMPARER.compareTo(left, leftOffset, leftLen, right, rightOffset,
    				rightLen) == 0;
    	}
    
    	/**
    	 * @param a
    	 *            left operand
    	 * @param buf
    	 *            right operand
    	 * @return True if equal
    	 */
    	public static boolean equals(byte[] a, ByteBuffer buf) {
    		if (a == null)
    			return buf == null;
    		if (buf == null)
    			return false;
    		if (a.length != buf.remaining())
    			return false;
    
    		// Thou shalt not modify the original byte buffer in what should be read
    		// only operations.
    		ByteBuffer b = buf.duplicate();
    		for (byte anA : a) {
    			if (anA != b.get()) {
    				return false;
    			}
    		}
    		return true;
    	}
    
    	/**
    	 * Return true if the byte array on the right is a prefix of the byte array
    	 * on the left.
    	 */
    	public static boolean startsWith(byte[] bytes, byte[] prefix) {
    		return bytes != null && prefix != null && bytes.length >= prefix.length
    				&& LexicographicalComparerHolder.BEST_COMPARER.compareTo(bytes, 0, prefix.length, prefix, 0,
    						prefix.length) == 0;
    	}
    
    	/**
    	 * @param a
    	 *            lower half
    	 * @param b
    	 *            upper half
    	 * @return New array that has a in lower half and b in upper half.
    	 */
    	public static byte[] add(final byte[] a, final byte[] b) {
    		return add(a, b, EMPTY_BYTE_ARRAY);
    	}
    
    	/**
    	 * @param a
    	 *            first third
    	 * @param b
    	 *            second third
    	 * @param c
    	 *            third third
    	 * @return New array made from a, b and c
    	 */
    	public static byte[] add(final byte[] a, final byte[] b, final byte[] c) {
    		byte[] result = new byte[a.length + b.length + c.length];
    		System.arraycopy(a, 0, result, 0, a.length);
    		System.arraycopy(b, 0, result, a.length, b.length);
    		System.arraycopy(c, 0, result, a.length + b.length, c.length);
    		return result;
    	}
    
    	/**
    	 * @param arrays
    	 *            all the arrays to concatenate together.
    	 * @return New array made from the concatenation of the given arrays.
    	 */
    	public static byte[] add(final byte[][] arrays) {
    		int length = 0;
    		for (int i = 0; i < arrays.length; i++) {
    			length += arrays[i].length;
    		}
    		byte[] result = new byte[length];
    		int index = 0;
    		for (int i = 0; i < arrays.length; i++) {
    			System.arraycopy(arrays[i], 0, result, index, arrays[i].length);
    			index += arrays[i].length;
    		}
    		return result;
    	}
    
    	/**
    	 * @param a
    	 *            array
    	 * @param length
    	 *            amount of bytes to grab
    	 * @return First <code>length</code> bytes from <code>a</code>
    	 */
    	public static byte[] head(final byte[] a, final int length) {
    		if (a.length < length) {
    			return null;
    		}
    		byte[] result = new byte[length];
    		System.arraycopy(a, 0, result, 0, length);
    		return result;
    	}
    
    	/**
    	 * @param a
    	 *            array
    	 * @param length
    	 *            amount of bytes to snarf
    	 * @return Last <code>length</code> bytes from <code>a</code>
    	 */
    	public static byte[] tail(final byte[] a, final int length) {
    		if (a.length < length) {
    			return null;
    		}
    		byte[] result = new byte[length];
    		System.arraycopy(a, a.length - length, result, 0, length);
    		return result;
    	}
    
    	/**
    	 * @param a
    	 *            array
    	 * @param length
    	 *            new array size
    	 * @return Value in <code>a</code> plus <code>length</code> prepended 0
    	 *         bytes
    	 */
    	public static byte[] padHead(final byte[] a, final int length) {
    		byte[] padding = new byte[length];
    		for (int i = 0; i < length; i++) {
    			padding[i] = 0;
    		}
    		return add(padding, a);
    	}
    
    	/**
    	 * @param a
    	 *            array
    	 * @param length
    	 *            new array size
    	 * @return Value in <code>a</code> plus <code>length</code> appended 0 bytes
    	 */
    	public static byte[] padTail(final byte[] a, final int length) {
    		byte[] padding = new byte[length];
    		for (int i = 0; i < length; i++) {
    			padding[i] = 0;
    		}
    		return add(a, padding);
    	}
    
    	/**
    	 * Split passed range. Expensive operation relatively. Uses BigInteger math.
    	 * Useful splitting ranges for MapReduce jobs.
    	 * 
    	 * @param a
    	 *            Beginning of range
    	 * @param b
    	 *            End of range
    	 * @param num
    	 *            Number of times to split range. Pass 1 if you want to split
    	 *            the range in two; i.e. one split.
    	 * @return Array of dividing values
    	 */
    	public static byte[][] split(final byte[] a, final byte[] b, final int num) {
    		return split(a, b, false, num);
    	}
    
    	/**
    	 * Split passed range. Expensive operation relatively. Uses BigInteger math.
    	 * Useful splitting ranges for MapReduce jobs.
    	 * 
    	 * @param a
    	 *            Beginning of range
    	 * @param b
    	 *            End of range
    	 * @param inclusive
    	 *            Whether the end of range is prefix-inclusive or is considered
    	 *            an exclusive boundary. Automatic splits are generally
    	 *            exclusive and manual splits with an explicit range utilize an
    	 *            inclusive end of range.
    	 * @param num
    	 *            Number of times to split range. Pass 1 if you want to split
    	 *            the range in two; i.e. one split.
    	 * @return Array of dividing values
    	 */
    	public static byte[][] split(final byte[] a, final byte[] b, boolean inclusive, final int num) {
    		byte[][] ret = new byte[num + 2][];
    		int i = 0;
    		Iterable<byte[]> iter = iterateOnSplits(a, b, inclusive, num);
    		if (iter == null)
    			return null;
    		for (byte[] elem : iter) {
    			ret[i++] = elem;
    		}
    		return ret;
    	}
    
    	/**
    	 * Iterate over keys within the passed range, splitting at an [a,b)
    	 * boundary.
    	 */
    	public static Iterable<byte[]> iterateOnSplits(final byte[] a, final byte[] b, final int num) {
    		return iterateOnSplits(a, b, false, num);
    	}
    
    	/**
    	 * Iterate over keys within the passed range.
    	 */
    	public static Iterable<byte[]> iterateOnSplits(final byte[] a, final byte[] b, boolean inclusive, final int num) {
    		byte[] aPadded;
    		byte[] bPadded;
    		if (a.length < b.length) {
    			aPadded = padTail(a, b.length - a.length);
    			bPadded = b;
    		} else if (b.length < a.length) {
    			aPadded = a;
    			bPadded = padTail(b, a.length - b.length);
    		} else {
    			aPadded = a;
    			bPadded = b;
    		}
    		if (compareTo(aPadded, bPadded) >= 0) {
    			throw new IllegalArgumentException("b <= a");
    		}
    		if (num <= 0) {
    			throw new IllegalArgumentException("num cannot be <= 0");
    		}
    		byte[] prependHeader = { 1, 0 };
    		final BigInteger startBI = new BigInteger(add(prependHeader, aPadded));
    		final BigInteger stopBI = new BigInteger(add(prependHeader, bPadded));
    		BigInteger diffBI = stopBI.subtract(startBI);
    		if (inclusive) {
    			diffBI = diffBI.add(BigInteger.ONE);
    		}
    		final BigInteger splitsBI = BigInteger.valueOf(num + 1);
    		// when diffBI < splitBI, use an additional byte to increase diffBI
    		if (diffBI.compareTo(splitsBI) < 0) {
    			byte[] aPaddedAdditional = new byte[aPadded.length + 1];
    			byte[] bPaddedAdditional = new byte[bPadded.length + 1];
    			for (int i = 0; i < aPadded.length; i++) {
    				aPaddedAdditional[i] = aPadded[i];
    			}
    			for (int j = 0; j < bPadded.length; j++) {
    				bPaddedAdditional[j] = bPadded[j];
    			}
    			aPaddedAdditional[aPadded.length] = 0;
    			bPaddedAdditional[bPadded.length] = 0;
    			return iterateOnSplits(aPaddedAdditional, bPaddedAdditional, inclusive, num);
    		}
    		final BigInteger intervalBI;
    		try {
    			intervalBI = diffBI.divide(splitsBI);
    		} catch (Exception e) {
    			// LOG.error("Exception caught during division", e);
    			logger.log(Level.SEVERE, "Exception caught during division", e);
    			return null;
    		}
    
    		final Iterator<byte[]> iterator = new Iterator<byte[]>() {
    			private int i = -1;
    
    			@Override
    			public boolean hasNext() {
    				return i < num + 1;
    			}
    
    			@Override
    			public byte[] next() {
    				i++;
    				if (i == 0)
    					return a;
    				if (i == num + 1)
    					return b;
    
    				BigInteger curBI = startBI.add(intervalBI.multiply(BigInteger.valueOf(i)));
    				byte[] padded = curBI.toByteArray();
    				if (padded[1] == 0)
    					padded = tail(padded, padded.length - 2);
    				else
    					padded = tail(padded, padded.length - 1);
    				return padded;
    			}
    
    			@Override
    			public void remove() {
    				throw new UnsupportedOperationException();
    			}
    
    		};
    
    		return new Iterable<byte[]>() {
    			@Override
    			public Iterator<byte[]> iterator() {
    				return iterator;
    			}
    		};
    	}
    
    	/**
    	 * @param bytes
    	 *            array to hash
    	 * @param offset
    	 *            offset to start from
    	 * @param length
    	 *            length to hash
    	 */
    	public static int hashCode(byte[] bytes, int offset, int length) {
    		int hash = 1;
    		for (int i = offset; i < offset + length; i++)
    			hash = (31 * hash) + (int) bytes[i];
    		return hash;
    	}
    
    	/**
    	 * @param t
    	 *            operands
    	 * @return Array of byte arrays made from passed array of Text
    	 */
    	public static byte[][] toByteArrays(final String[] t) {
    		byte[][] result = new byte[t.length][];
    		for (int i = 0; i < t.length; i++) {
    			result[i] = toBytes(t[i]);
    		}
    		return result;
    	}
    
    	/**
    	 * @param t
    	 *            operands
    	 * @return Array of binary byte arrays made from passed array of binary
    	 *         strings
    	 */
    	public static byte[][] toBinaryByteArrays(final String[] t) {
    		byte[][] result = new byte[t.length][];
    		for (int i = 0; i < t.length; i++) {
    			result[i] = toBytesBinary(t[i]);
    		}
    		return result;
    	}
    
    	/**
    	 * @param column
    	 *            operand
    	 * @return A byte array of a byte array where first and only entry is
    	 *         <code>column</code>
    	 */
    	public static byte[][] toByteArrays(final String column) {
    		return toByteArrays(toBytes(column));
    	}
    
    	/**
    	 * @param column
    	 *            operand
    	 * @return A byte array of a byte array where first and only entry is
    	 *         <code>column</code>
    	 */
    	public static byte[][] toByteArrays(final byte[] column) {
    		byte[][] result = new byte[1][];
    		result[0] = column;
    		return result;
    	}
    
    }
    
    class UnsafeAvailChecker {
    	static final Logger logger = Logger.getLogger(UnsafeAvailChecker.class.getName());
    
    	private static final String CLASS_NAME = "sun.misc.Unsafe";
    	private static boolean avail = false;
    	private static boolean unaligned = false;
    
    	static {
    		avail = AccessController.doPrivileged(new PrivilegedAction<Boolean>() {
    			@Override
    			public Boolean run() {
    				try {
    					Class<?> clazz = Class.forName(CLASS_NAME);
    					Field f = clazz.getDeclaredField("theUnsafe");
    					f.setAccessible(true);
    					return f.get(null) != null;
    				} catch (Throwable e) {
    					logger.log(Level.WARNING, "sun.misc.Unsafe is not available/accessible", e);
    				}
    				return false;
    			}
    		});
    		// When Unsafe itself is not available/accessible consider unaligned as
    		// false.
    		if (avail) {
    			try {
    				// Using java.nio.Bits#unaligned() to check for unaligned-access
    				// capability
    				Class<?> clazz = Class.forName("java.nio.Bits");
    				Method m = clazz.getDeclaredMethod("unaligned");
    				m.setAccessible(true);
    				unaligned = (Boolean) m.invoke(null);
    			} catch (Exception e) {
    				logger.log(Level.WARNING, "java.nio.Bits#unaligned() check failed."
    						+ "Unsafe based read/write of primitive types won't be used", e);
    
    			}
    		}
    	}
    
    	/**
    	 * @return true when running JVM is having sun's Unsafe package available in
    	 *         it and underlying system having unaligned-access capability.
    	 */
    	public static boolean unaligned() {
    		return unaligned;
    	}
    }
    
    @SuppressWarnings("restriction")
    final class UnsafeAccess {
    	static final Logger logger = Logger.getLogger(UnsafeAccess.class.getName());
    
    
    	public static final Unsafe theUnsafe;
    
    	static {
    		theUnsafe = (Unsafe) AccessController.doPrivileged(new PrivilegedAction<Object>() {
    			@Override
    			public Object run() {
    				try {
    					Field f = Unsafe.class.getDeclaredField("theUnsafe");
    					f.setAccessible(true);
    					return f.get(null);
    				} catch (Throwable e) {
    					logger.log(Level.WARNING, "sun.misc.Unsafe is not accessible", e);
    				}
    				return null;
    			}
    		});
    
    	}
    }
    






  • 相关阅读:
    uniapp开发微信小程序
    requests自动登录禅道并提交bug 测试
    [转载]使用CPU时间戳进行高精度计时
    lu面
    音量控制面板项目说明
    【转载】粤语翻译工具
    专业操盘手的买卖法则
    自动刷新查询火车票脚本
    股东权益和权益比
    异形魔方SQ1的暴力解法
  • 原文地址:https://www.cnblogs.com/moonciki/p/8145834.html
Copyright © 2020-2023  润新知