java 将 基本类型转byte[] 数组时,需考虑大端小端问题
1. 大端格式下,基本类型与byte[]互转 BigByteUtil.java
package com.ysq.util; import java.nio.ByteBuffer; import java.nio.ByteOrder; import java.nio.charset.Charset; import java.util.logging.Logger; /** * 大端 byte 工具类 * @author admin * */ public class BigByteUtil { static Logger logger = Logger.getLogger(BigByteUtil.class.getName()); /** * short 转 byte[] * 大端 * @param data * @return */ public static byte[] getShortBytes(short data) { ByteBuffer buffer = ByteBuffer.allocate(2); buffer.order(ByteOrder.BIG_ENDIAN); buffer.putShort(data); byte[] bytes = buffer.array(); return bytes; } /** * chart 转 byte[] * 大端 * @param data * @return */ public static byte[] getCharBytes(char data) { ByteBuffer buffer = ByteBuffer.allocate(2); buffer.order(ByteOrder.BIG_ENDIAN); buffer.putChar(data); byte[] bytes = buffer.array(); return bytes; } /** * int 转 byte[] * 大端 * @param data * @return */ public static byte[] getIntBytes(int data) { ByteBuffer buffer = ByteBuffer.allocate(4); buffer.order(ByteOrder.BIG_ENDIAN); buffer.putInt(data); byte[] bytes = buffer.array(); return bytes; } /** * long 转 byte[] * 大端 * @param data * @return */ public static byte[] getLongBytes(long data) { ByteBuffer buffer = ByteBuffer.allocate(8); buffer.order(ByteOrder.BIG_ENDIAN); buffer.putLong(data); byte[] bytes = buffer.array(); return bytes; } /** * float 转 byte[] * 大端 * @param data * @return */ public static byte[] getFloatBytes(float data) { ByteBuffer buffer = ByteBuffer.allocate(4); buffer.order(ByteOrder.BIG_ENDIAN); buffer.putFloat(data); byte[] bytes = buffer.array(); return bytes; } /** * double 转 byte[] * 大端 * @param data * @return */ public static byte[] getDoubleBytes(double data) { ByteBuffer buffer = ByteBuffer.allocate(8); buffer.order(ByteOrder.BIG_ENDIAN); buffer.putDouble(data); byte[] bytes = buffer.array(); return bytes; } /** * String 转 byte[] * * @param data * @param charsetName * @return */ public static byte[] getStringBytes(String data, String charsetName) { Charset charset = Charset.forName(charsetName); byte[] bytes = data.getBytes(charset); return bytes; } /** * String 转 byte[] * * @param data * @return */ public static byte[] getStringBytes(String data) { byte[] bytes = null; if(data != null){ bytes = data.getBytes(); }else{ bytes = new byte[0]; } return bytes; } /*****************************************************************************************************************************/ /** * byte[] 转short * 大端 * @param bytes * @return */ public static short getShort(byte[] bytes) { ByteBuffer buffer = ByteBuffer.allocate(bytes.length); buffer.order(ByteOrder.BIG_ENDIAN); buffer.put(bytes); short result = buffer.getShort(0); return result; } /** * byte[] 转 char * 大端 * @param bytes * @return */ public static char getChar(byte[] bytes) { ByteBuffer buffer = ByteBuffer.allocate(bytes.length); buffer.order(ByteOrder.BIG_ENDIAN); buffer.put(bytes); char result = buffer.getChar(0); return result; } /** * byte[] 转 int * 大端 * @param bytes * @return */ public static int getInt(byte[] bytes) { ByteBuffer buffer = ByteBuffer.allocate(bytes.length); buffer.order(ByteOrder.BIG_ENDIAN); buffer.put(bytes); int result = buffer.getInt(0); return result; } /** * byte[] 转 long * * @param bytes * @return */ public static long getLong(byte[] bytes) { ByteBuffer buffer = ByteBuffer.allocate(bytes.length); buffer.order(ByteOrder.BIG_ENDIAN); buffer.put(bytes); long result = buffer.getLong(0); return result; } /** * byte[] 转 float * * @param bytes * @return */ public static float getFloat(byte[] bytes) { ByteBuffer buffer = ByteBuffer.allocate(bytes.length); buffer.order(ByteOrder.BIG_ENDIAN); buffer.put(bytes); float result = buffer.getFloat(0); return result; } /** * byte[] 转 double * * @param bytes * @return */ public static double getDouble(byte[] bytes) { ByteBuffer buffer = ByteBuffer.allocate(bytes.length); buffer.order(ByteOrder.BIG_ENDIAN); buffer.put(bytes); double result = buffer.getDouble(0); return result; } /** * byte[] 转 String * * @param bytes * @param charsetName * @return */ public static String getString(byte[] bytes, String charsetName) { String result = new String(bytes, Charset.forName(charsetName)); return result; } /** * byte[] 转 String * * @param bytes * @return */ public static String getString(byte[] bytes) { String result = new String(bytes); return result; } /** * 验证测试 */ private static void verifiTest(){ short s = 1111; int i = 2222; long l = 333333; char c = 'c'; float f = 444.44f; double d = 555.55; String string = "测试字符串666"; System.out.println(s); System.out.println(i); System.out.println(l); System.out.println(c); System.out.println(f); System.out.println(d); System.out.println(string); System.out.println("**************"); System.out.println(getShort(getShortBytes(s))); System.out.println(getInt(getIntBytes(i))); System.out.println(getLong(getLongBytes(l))); System.out.println(getChar(getCharBytes(c))); System.out.println(getFloat(getFloatBytes(f))); System.out.println(getDouble(getDoubleBytes(d))); System.out.println(getString(getStringBytes(string))); } public static void main(String[] args) { verifiTest(); System.out.println("finished ... "); } }
2. 小端格式下,基本类型与byte[]互转 LittleByteUtil.java
两种方法在效率上没有太大差别
package com.ysq.util; import java.nio.ByteBuffer; import java.nio.ByteOrder; import java.nio.charset.Charset; import java.util.Arrays; import java.util.logging.Logger; /** * 小端转换 * java 基础类型与 byte[] 相互转换 * * @author admin * */ public class LittleByteUtil { static Logger logger = Logger.getLogger(LittleByteUtil.class.getName()); static final long fx = 0xffl; /** * short 转 byte[] * 小端 * @param data * @return */ public static byte[] getShortBytes(short data) { byte[] bytes = new byte[2]; bytes[0] = (byte) (data & fx); bytes[1] = (byte) ((data >> 8) & fx); return bytes; } /** * chart 转 byte[] * 小端 * @param data * @return */ public static byte[] getCharBytes(char data) { byte[] bytes = new byte[2]; bytes[0] = (byte) (data & fx); bytes[1] = (byte) ((data >> 8) & fx); return bytes; } /** * int 转 byte[] * 小端 * @param data * @return */ public static byte[] getIntBytes(int data) { int length = 4; byte[] bytes = new byte[length]; for (int i = 0; i < length; i++) { bytes[i] = (byte) ((data >> (i*8)) & fx); } return bytes; } /** * long 转 byte[] * 小端 * @param data * @return */ public static byte[] getLongBytes(long data) { int length = 8; byte[] bytes = new byte[length]; for (int i = 0; i < length; i++) { bytes[i] = (byte) ((data >> (i*8)) & fx); } return bytes; } /** * float 转 byte[] * 小端 * @param data * @return */ public static byte[] getFloatBytes(float data) { int intBits = Float.floatToIntBits(data); byte[] bytes = getIntBytes(intBits); return bytes; } /** * double 转 byte[] * 小端 * @param data * @return */ public static byte[] getDoubleBytes(double data) { long intBits = Double.doubleToLongBits(data); byte[] bytes = getLongBytes(intBits); return bytes; } /** * String 转 byte[] * * @param data * @param charsetName * @return */ public static byte[] getStringBytes(String data, String charsetName) { Charset charset = Charset.forName(charsetName); byte[] bytes = data.getBytes(charset); return bytes; } /** * String 转 byte[] * * @param data * @return */ public static byte[] getStringBytes(String data) { byte[] bytes = null; if(data != null){ bytes = data.getBytes(); }else{ bytes = new byte[0]; } return bytes; } /** * byte[] 转short * 小端 * @param bytes * @return */ public static short getShort(byte[] bytes) { short result = (short) ((fx & bytes[0]) | ((fx & bytes[1]) << 8)); return result; } /** * byte[] 转 char * 小端 * @param bytes * @return */ public static char getChar(byte[] bytes) { char result = (char) ((fx & bytes[0]) | ((fx & bytes[1]) << 8)); return result; } /** * byte[] 转 int * * @param bytes * @return */ public static int getInt(byte[] bytes) { int result = (int) ((fx & bytes[0]) | ((fx & bytes[1]) << 8) | ((fx & bytes[2]) << 16) | ((fx & bytes[3]) << 24)); return result; } /** * byte[] 转 long * * @param bytes * @return */ public static long getLong(byte[] bytes) { long result = (long)((long)(fx & bytes[0]) | (long)((fx & bytes[1]) << 8) | (long)((fx & bytes[2]) << 16) | (long)((fx & bytes[3]) << 24) | (long)((fx & bytes[4]) << 32) | (long)((fx & bytes[5]) << 40) | (long)((fx & bytes[6]) << 48) | (long)((fx & bytes[7]) << 56)); return result; } /** * byte[] 转 float * * @param bytes * @return */ public static float getFloat(byte[] b) { int l = getInt(b); return Float.intBitsToFloat(l); } /** * byte[] 转 double * * @param bytes * @return */ public static double getDouble(byte[] bytes) { long l = getLong(bytes); return Double.longBitsToDouble(l); } /** * byte[] 转 String * * @param bytes * @param charsetName * @return */ public static String getString(byte[] bytes, String charsetName) { String result = new String(bytes, Charset.forName(charsetName)); return result; } /** * byte[] 转 String * * @param bytes * @return */ public static String getString(byte[] bytes) { String result = new String(bytes); return result; } /** * 追加数组 * * @param target * @param append * @return */ public static byte[] appendByte(byte[] target, byte[] append) { int originalLength = target.length; int appendLength = append.length; // 先扩容长度 int totalLength = originalLength + appendLength; target = Arrays.copyOf(target, totalLength); System.arraycopy(append, 0, target, originalLength, appendLength); return target; } /** * 验证测试 */ private static void verifiTest(){ short s = 1111; int i = 2222; long l = 333333; char c = 'c'; float f = 444.44f; double d = 555.55; String string = "测试字符串666"; System.out.println(s); System.out.println(i); System.out.println(l); System.out.println(c); System.out.println(f); System.out.println(d); System.out.println(string); System.out.println("**************"); System.out.println(getShort(getShortBytes(s))); System.out.println(getInt(getIntBytes(i))); System.out.println(getLong(getLongBytes(l))); System.out.println(getChar(getCharBytes(c))); System.out.println(getFloat(getFloatBytes(f))); System.out.println(getDouble(getDoubleBytes(d))); System.out.println(getString(getStringBytes(string))); } private static void bufferTest(){ long a = 4648097885297469030l; ByteBuffer buf = ByteBuffer.allocate(8); buf.order(ByteOrder.LITTLE_ENDIAN); buf.putLong(a); byte[] bufByte = buf.array(); byte[] bytes = getLongBytes(a); long ba = getLong(bytes); System.out.println(bufByte.equals(ba)); System.out.println(ba); } public static void main(String[] args) { verifiTest(); bufferTest(); System.out.println("finished ... "); } }
3. hbase 包中也有一个 Bytes 工具类很好用,但是 hbase 依赖很多东西,所以我将 hbase 的 Bytes 工具类提取出来,可以实现大端小段自适应,但是效率上比不上上面的方法,并且初始化很慢,不推荐该方法,但是在此将他放上来
源代码:
package com.ysq.util; import java.lang.reflect.Field; import java.lang.reflect.Method; import java.math.BigDecimal; import java.math.BigInteger; import java.nio.ByteBuffer; import java.nio.ByteOrder; import java.nio.charset.Charset; import java.security.AccessController; import java.security.PrivilegedAction; import java.util.Iterator; import java.util.logging.Level; import java.util.logging.Logger; import sun.misc.Unsafe; import com.ysq.util.BytesUtil.LexicographicalComparerHolder.UnsafeComparer; /** * Utility class that handles byte arrays, conversions to/from other types, * comparisons, hash code generation, manufacturing keys for HashMaps or * HashSets, etc. */ @SuppressWarnings("restriction") public class BytesUtil { static Logger logger = Logger.getLogger(BytesUtil.class.getName()); // HConstants.UTF8_ENCODING should be updated if this changed /** When we encode strings, we always specify UTF8 encoding */ private static final String UTF8_ENCODING = "UTF-8"; // HConstants.UTF8_CHARSET should be updated if this changed /** When we encode strings, we always specify UTF8 encoding */ private static final Charset UTF8_CHARSET = Charset.forName(UTF8_ENCODING); // HConstants.EMPTY_BYTE_ARRAY should be updated if this changed private static final byte[] EMPTY_BYTE_ARRAY = new byte[0]; // private static final Log LOG = LogFactory.getLog(Bytes.class); /** * Size of boolean in bytes */ public static final int SIZEOF_BOOLEAN = Byte.SIZE / Byte.SIZE; /** * Size of int in bytes */ public static final int SIZEOF_INT = Integer.SIZE / Byte.SIZE; /** * Size of long in bytes */ public static final int SIZEOF_LONG = Long.SIZE / Byte.SIZE; /** * Size of short in bytes */ public static final int SIZEOF_SHORT = Short.SIZE / Byte.SIZE; private static final boolean UNSAFE_UNALIGNED = UnsafeAvailChecker.unaligned(); /** * Returns length of the byte array, returning 0 if the array is null. * Useful for calculating sizes. * * @param b * byte array, which can be null * @return 0 if b is null, otherwise returns length */ final public static int len(byte[] b) { return b == null ? 0 : b.length; } /** * Put bytes at the specified byte array position. * * @param tgtBytes * the byte array * @param tgtOffset * position in the array * @param srcBytes * array to write out * @param srcOffset * source offset * @param srcLength * source length * @return incremented offset */ public static int putBytes(byte[] tgtBytes, int tgtOffset, byte[] srcBytes, int srcOffset, int srcLength) { System.arraycopy(srcBytes, srcOffset, tgtBytes, tgtOffset, srcLength); return tgtOffset + srcLength; } /** * Write a single byte out to the specified byte array position. * * @param bytes * the byte array * @param offset * position in the array * @param b * byte to write out * @return incremented offset */ public static int putByte(byte[] bytes, int offset, byte b) { bytes[offset] = b; return offset + 1; } /** * Add the whole content of the ByteBuffer to the bytes arrays. The * ByteBuffer is modified. * * @param bytes * the byte array * @param offset * position in the array * @param buf * ByteBuffer to write out * @return incremented offset */ public static int putByteBuffer(byte[] bytes, int offset, ByteBuffer buf) { int len = buf.remaining(); buf.get(bytes, offset, len); return offset + len; } /** * Returns a new byte array, copied from the given {@code buf}, from the * index 0 (inclusive) to the limit (exclusive), regardless of the current * position. The position and the other index parameters are not changed. * * @param buf * a byte buffer * @return the byte array * @see #getBytes(ByteBuffer) */ public static byte[] toBytes(ByteBuffer buf) { ByteBuffer dup = buf.duplicate(); dup.position(0); return readBytes(dup); } private static byte[] readBytes(ByteBuffer buf) { byte[] result = new byte[buf.remaining()]; buf.get(result); return result; } /** * @param b * Presumed UTF-8 encoded byte array. * @return String made from <code>b</code> */ public static String toString(final byte[] b) { if (b == null) { return null; } return toString(b, 0, b.length); } /** * Joins two byte arrays together using a separator. * * @param b1 * The first byte array. * @param sep * The separator to use. * @param b2 * The second byte array. */ public static String toString(final byte[] b1, String sep, final byte[] b2) { return toString(b1, 0, b1.length) + sep + toString(b2, 0, b2.length); } /** * This method will convert utf8 encoded bytes into a string. If the given * byte array is null, this method will return null. * * @param b * Presumed UTF-8 encoded byte array. * @param off * offset into array * @return String made from <code>b</code> or null */ public static String toString(final byte[] b, int off) { if (b == null) { return null; } int len = b.length - off; if (len <= 0) { return ""; } return new String(b, off, len, UTF8_CHARSET); } /** * This method will convert utf8 encoded bytes into a string. If the given * byte array is null, this method will return null. * * @param b * Presumed UTF-8 encoded byte array. * @param off * offset into array * @param len * length of utf-8 sequence * @return String made from <code>b</code> or null */ public static String toString(final byte[] b, int off, int len) { if (b == null) { return null; } if (len == 0) { return ""; } return new String(b, off, len, UTF8_CHARSET); } /** * Write a printable representation of a byte array. * * @param b * byte array * @return string * @see #toStringBinary(byte[], int, int) */ public static String toStringBinary(final byte[] b) { if (b == null) return "null"; return toStringBinary(b, 0, b.length); } /** * Converts the given byte buffer to a printable representation, from the * index 0 (inclusive) to the limit (exclusive), regardless of the current * position. The position and the other index parameters are not changed. * * @param buf * a byte buffer * @return a string representation of the buffer's binary contents * @see #toBytes(ByteBuffer) * @see #getBytes(ByteBuffer) */ public static String toStringBinary(ByteBuffer buf) { if (buf == null) return "null"; if (buf.hasArray()) { return toStringBinary(buf.array(), buf.arrayOffset(), buf.limit()); } return toStringBinary(toBytes(buf)); } /** * Write a printable representation of a byte array. Non-printable * characters are hex escaped in the format \x%02X, eg: x00 x05 etc * * @param b * array to write out * @param off * offset to start at * @param len * length to write * @return string output */ public static String toStringBinary(final byte[] b, int off, int len) { StringBuilder result = new StringBuilder(); // Just in case we are passed a 'len' that is > buffer length... if (off >= b.length) return result.toString(); if (off + len > b.length) len = b.length - off; for (int i = off; i < off + len; ++i) { int ch = b[i] & 0xFF; if ((ch >= '0' && ch <= '9') || (ch >= 'A' && ch <= 'Z') || (ch >= 'a' && ch <= 'z') || " `~!@#$%^&*()-_=+[]{}|;:'",.<>/?".indexOf(ch) >= 0) { result.append((char) ch); } else { result.append(String.format("\x%02X", ch)); } } return result.toString(); } private static boolean isHexDigit(char c) { return (c >= 'A' && c <= 'F') || (c >= '0' && c <= '9'); } /** * Takes a ASCII digit in the range A-F0-9 and returns the corresponding * integer/ordinal value. * * @param ch * The hex digit. * @return The converted hex value as a byte. */ public static byte toBinaryFromHex(byte ch) { if (ch >= 'A' && ch <= 'F') return (byte) ((byte) 10 + (byte) (ch - 'A')); // else return (byte) (ch - '0'); } public static byte[] toBytesBinary(String in) { // this may be bigger than we need, but let's be safe. byte[] b = new byte[in.length()]; int size = 0; for (int i = 0; i < in.length(); ++i) { char ch = in.charAt(i); if (ch == '\' && in.length() > i + 1 && in.charAt(i + 1) == 'x') { // ok, take next 2 hex digits. char hd1 = in.charAt(i + 2); char hd2 = in.charAt(i + 3); // they need to be A-F0-9: if (!isHexDigit(hd1) || !isHexDigit(hd2)) { // bogus escape code, ignore: continue; } // turn hex ASCII digit -> number byte d = (byte) ((toBinaryFromHex((byte) hd1) << 4) + toBinaryFromHex((byte) hd2)); b[size++] = d; i += 3; // skip 3 } else { b[size++] = (byte) ch; } } // resize: byte[] b2 = new byte[size]; System.arraycopy(b, 0, b2, 0, size); return b2; } /** * Converts a string to a UTF-8 byte array. * * @param s * string * @return the byte array */ public static byte[] toBytes(String s) { return s.getBytes(UTF8_CHARSET); } /** * Convert a boolean to a byte array. True becomes -1 and false becomes 0. * * @param b * value * @return <code>b</code> encoded in a byte array. */ public static byte[] toBytes(final boolean b) { return new byte[] { b ? (byte) -1 : (byte) 0 }; } /** * Reverses {@link #toBytes(boolean)} * * @param b * array * @return True or false. */ public static boolean toBoolean(final byte[] b) { if (b.length != 1) { throw new IllegalArgumentException("Array has wrong size: " + b.length); } return b[0] != (byte) 0; } /** * Convert a long value to a byte array using big-endian. * * @param val * value to convert * @return the byte array */ public static byte[] toBytes(long val) { byte[] b = new byte[8]; for (int i = 7; i > 0; i--) { b[i] = (byte) val; val >>>= 8; } b[0] = (byte) val; return b; } /** * Converts a byte array to a long value. Reverses {@link #toBytes(long)} * * @param bytes * array * @return the long value */ public static long toLong(byte[] bytes) { return toLong(bytes, 0, SIZEOF_LONG); } /** * Converts a byte array to a long value. Assumes there will be * {@link #SIZEOF_LONG} bytes available. * * @param bytes * bytes * @param offset * offset * @return the long value */ public static long toLong(byte[] bytes, int offset) { return toLong(bytes, offset, SIZEOF_LONG); } /** * Converts a byte array to a long value. * * @param bytes * array of bytes * @param offset * offset into array * @param length * length of data (must be {@link #SIZEOF_LONG}) * @return the long value * @throws IllegalArgumentException * if length is not {@link #SIZEOF_LONG} or if there's not * enough room in the array at the offset indicated. */ public static long toLong(byte[] bytes, int offset, final int length) { if (length != SIZEOF_LONG || offset + length > bytes.length) { throw explainWrongLengthOrOffset(bytes, offset, length, SIZEOF_LONG); } if (UNSAFE_UNALIGNED) { return toLongUnsafe(bytes, offset); } else { long l = 0; for (int i = offset; i < offset + length; i++) { l <<= 8; l ^= bytes[i] & 0xFF; } return l; } } private static IllegalArgumentException explainWrongLengthOrOffset(final byte[] bytes, final int offset, final int length, final int expectedLength) { String reason; if (length != expectedLength) { reason = "Wrong length: " + length + ", expected " + expectedLength; } else { reason = "offset (" + offset + ") + length (" + length + ") exceed the" + " capacity of the array: " + bytes.length; } return new IllegalArgumentException(reason); } /** * Presumes float encoded as IEEE 754 floating-point "single format" * * @param bytes * byte array * @return Float made from passed byte array. */ public static float toFloat(byte[] bytes) { return toFloat(bytes, 0); } /** * Presumes float encoded as IEEE 754 floating-point "single format" * * @param bytes * array to convert * @param offset * offset into array * @return Float made from passed byte array. */ public static float toFloat(byte[] bytes, int offset) { int ti = toInt(bytes, offset, SIZEOF_INT); return Float.intBitsToFloat(ti); } /** * @param bytes * byte array * @param offset * offset to write to * @param f * float value * @return New offset in <code>bytes</code> */ public static int putFloat(byte[] bytes, int offset, float f) { return putInt(bytes, offset, Float.floatToRawIntBits(f)); } /** * @param f * float value * @return the float represented as byte [] */ public static byte[] toBytes(final float f) { // Encode it as int return toBytes(Float.floatToRawIntBits(f)); } /** * @param bytes * byte array * @return Return double made from passed bytes. */ public static double toDouble(final byte[] bytes) { return toDouble(bytes, 0); } /** * @param bytes * byte array * @param offset * offset where double is * @return Return double made from passed bytes. */ public static double toDouble(final byte[] bytes, final int offset) { return Double.longBitsToDouble(toLong(bytes, offset, SIZEOF_LONG)); } /** * Serialize a double as the IEEE 754 double format output. The resultant * array will be 8 bytes long. * * @param d * value * @return the double represented as byte [] */ public static byte[] toBytes(final double d) { // Encode it as a long return toBytes(Double.doubleToRawLongBits(d)); } /** * Convert an int value to a byte array. Big-endian. Same as what * DataOutputStream.writeInt does. * * @param val * value * @return the byte array */ public static byte[] toBytes(int val) { byte[] b = new byte[4]; for (int i = 3; i > 0; i--) { b[i] = (byte) val; val >>>= 8; } b[0] = (byte) val; return b; } /** * Converts a byte array to an int value * * @param bytes * byte array * @return the int value */ public static int toInt(byte[] bytes) { return toInt(bytes, 0, SIZEOF_INT); } /** * Converts a byte array to an int value * * @param bytes * byte array * @param offset * offset into array * @return the int value */ public static int toInt(byte[] bytes, int offset) { return toInt(bytes, offset, SIZEOF_INT); } /** * Converts a byte array to an int value * * @param bytes * byte array * @param offset * offset into array * @param length * length of int (has to be {@link #SIZEOF_INT}) * @return the int value * @throws IllegalArgumentException * if length is not {@link #SIZEOF_INT} or if there's not enough * room in the array at the offset indicated. */ public static int toInt(byte[] bytes, int offset, final int length) { if (length != SIZEOF_INT || offset + length > bytes.length) { throw explainWrongLengthOrOffset(bytes, offset, length, SIZEOF_INT); } if (UNSAFE_UNALIGNED) { return toIntUnsafe(bytes, offset); } else { int n = 0; for (int i = offset; i < (offset + length); i++) { n <<= 8; n ^= bytes[i] & 0xFF; } return n; } } /** * Converts a byte array to an int value (Unsafe version) * * @param bytes * byte array * @param offset * offset into array * @return the int value */ public static int toIntUnsafe(byte[] bytes, int offset) { if (UnsafeComparer.littleEndian) { return Integer.reverseBytes( UnsafeComparer.theUnsafe.getInt(bytes, (long) offset + UnsafeComparer.BYTE_ARRAY_BASE_OFFSET)); } else { return UnsafeComparer.theUnsafe.getInt(bytes, (long) offset + UnsafeComparer.BYTE_ARRAY_BASE_OFFSET); } } /** * Converts a byte array to an short value (Unsafe version) * * @param bytes * byte array * @param offset * offset into array * @return the short value */ public static short toShortUnsafe(byte[] bytes, int offset) { if (UnsafeComparer.littleEndian) { return Short.reverseBytes( UnsafeComparer.theUnsafe.getShort(bytes, (long) offset + UnsafeComparer.BYTE_ARRAY_BASE_OFFSET)); } else { return UnsafeComparer.theUnsafe.getShort(bytes, (long) offset + UnsafeComparer.BYTE_ARRAY_BASE_OFFSET); } } /** * Converts a byte array to an long value (Unsafe version) * * @param bytes * byte array * @param offset * offset into array * @return the long value */ public static long toLongUnsafe(byte[] bytes, int offset) { if (UnsafeComparer.littleEndian) { return Long.reverseBytes( UnsafeComparer.theUnsafe.getLong(bytes, (long) offset + UnsafeComparer.BYTE_ARRAY_BASE_OFFSET)); } else { return UnsafeComparer.theUnsafe.getLong(bytes, (long) offset + UnsafeComparer.BYTE_ARRAY_BASE_OFFSET); } } /** * Converts a byte array to an int value * * @param bytes * byte array * @param offset * offset into array * @param length * how many bytes should be considered for creating int * @return the int value * @throws IllegalArgumentException * if there's not enough room in the array at the offset * indicated. */ public static int readAsInt(byte[] bytes, int offset, final int length) { if (offset + length > bytes.length) { throw new IllegalArgumentException("offset (" + offset + ") + length (" + length + ") exceed the" + " capacity of the array: " + bytes.length); } int n = 0; for (int i = offset; i < (offset + length); i++) { n <<= 8; n ^= bytes[i] & 0xFF; } return n; } /** * Put an int value out to the specified byte array position. * * @param bytes * the byte array * @param offset * position in the array * @param val * int to write out * @return incremented offset * @throws IllegalArgumentException * if the byte array given doesn't have enough room at the * offset specified. */ public static int putInt(byte[] bytes, int offset, int val) { if (bytes.length - offset < SIZEOF_INT) { throw new IllegalArgumentException( "Not enough room to put an int at" + " offset " + offset + " in a " + bytes.length + " byte array"); } if (UNSAFE_UNALIGNED) { return putIntUnsafe(bytes, offset, val); } else { for (int i = offset + 3; i > offset; i--) { bytes[i] = (byte) val; val >>>= 8; } bytes[offset] = (byte) val; return offset + SIZEOF_INT; } } /** * Put an int value out to the specified byte array position (Unsafe). * * @param bytes * the byte array * @param offset * position in the array * @param val * int to write out * @return incremented offset */ public static int putIntUnsafe(byte[] bytes, int offset, int val) { if (UnsafeComparer.littleEndian) { val = Integer.reverseBytes(val); } UnsafeComparer.theUnsafe.putInt(bytes, (long) offset + UnsafeComparer.BYTE_ARRAY_BASE_OFFSET, val); return offset + SIZEOF_INT; } /** * Convert a short value to a byte array of {@link #SIZEOF_SHORT} bytes * long. * * @param val * value * @return the byte array */ public static byte[] toBytes(short val) { byte[] b = new byte[SIZEOF_SHORT]; b[1] = (byte) val; val >>= 8; b[0] = (byte) val; return b; } /** * Converts a byte array to a short value * * @param bytes * byte array * @return the short value */ public static short toShort(byte[] bytes) { return toShort(bytes, 0, SIZEOF_SHORT); } /** * Converts a byte array to a short value * * @param bytes * byte array * @param offset * offset into array * @return the short value */ public static short toShort(byte[] bytes, int offset) { return toShort(bytes, offset, SIZEOF_SHORT); } /** * Converts a byte array to a short value * * @param bytes * byte array * @param offset * offset into array * @param length * length, has to be {@link #SIZEOF_SHORT} * @return the short value * @throws IllegalArgumentException * if length is not {@link #SIZEOF_SHORT} or if there's not * enough room in the array at the offset indicated. */ public static short toShort(byte[] bytes, int offset, final int length) { if (length != SIZEOF_SHORT || offset + length > bytes.length) { throw explainWrongLengthOrOffset(bytes, offset, length, SIZEOF_SHORT); } if (UNSAFE_UNALIGNED) { return toShortUnsafe(bytes, offset); } else { short n = 0; n ^= bytes[offset] & 0xFF; n <<= 8; n ^= bytes[offset + 1] & 0xFF; return n; } } /** * Returns a new byte array, copied from the given {@code buf}, from the * position (inclusive) to the limit (exclusive). The position and the other * index parameters are not changed. * * @param buf * a byte buffer * @return the byte array * @see #toBytes(ByteBuffer) */ public static byte[] getBytes(ByteBuffer buf) { return readBytes(buf.duplicate()); } /** * Put a short value out to the specified byte array position. * * @param bytes * the byte array * @param offset * position in the array * @param val * short to write out * @return incremented offset * @throws IllegalArgumentException * if the byte array given doesn't have enough room at the * offset specified. */ public static int putShort(byte[] bytes, int offset, short val) { if (bytes.length - offset < SIZEOF_SHORT) { throw new IllegalArgumentException("Not enough room to put a short at" + " offset " + offset + " in a " + bytes.length + " byte array"); } if (UNSAFE_UNALIGNED) { return putShortUnsafe(bytes, offset, val); } else { bytes[offset + 1] = (byte) val; val >>= 8; bytes[offset] = (byte) val; return offset + SIZEOF_SHORT; } } /** * Put a short value out to the specified byte array position (Unsafe). * * @param bytes * the byte array * @param offset * position in the array * @param val * short to write out * @return incremented offset */ public static int putShortUnsafe(byte[] bytes, int offset, short val) { if (UnsafeComparer.littleEndian) { val = Short.reverseBytes(val); } UnsafeComparer.theUnsafe.putShort(bytes, (long) offset + UnsafeComparer.BYTE_ARRAY_BASE_OFFSET, val); return offset + SIZEOF_SHORT; } /** * Put an int value as short out to the specified byte array position. Only * the lower 2 bytes of the short will be put into the array. The caller of * the API need to make sure they will not loose the value by doing so. This * is useful to store an unsigned short which is represented as int in other * parts. * * @param bytes * the byte array * @param offset * position in the array * @param val * value to write out * @return incremented offset * @throws IllegalArgumentException * if the byte array given doesn't have enough room at the * offset specified. */ public static int putAsShort(byte[] bytes, int offset, int val) { if (bytes.length - offset < SIZEOF_SHORT) { throw new IllegalArgumentException("Not enough room to put a short at" + " offset " + offset + " in a " + bytes.length + " byte array"); } bytes[offset + 1] = (byte) val; val >>= 8; bytes[offset] = (byte) val; return offset + SIZEOF_SHORT; } /** * Convert a BigDecimal value to a byte array * * @param val * @return the byte array */ public static byte[] toBytes(BigDecimal val) { byte[] valueBytes = val.unscaledValue().toByteArray(); byte[] result = new byte[valueBytes.length + SIZEOF_INT]; int offset = putInt(result, 0, val.scale()); putBytes(result, offset, valueBytes, 0, valueBytes.length); return result; } /** * Converts a byte array to a BigDecimal * * @param bytes * @return the char value */ public static BigDecimal toBigDecimal(byte[] bytes) { return toBigDecimal(bytes, 0, bytes.length); } /** * Converts a byte array to a BigDecimal value * * @param bytes * @param offset * @param length * @return the char value */ public static BigDecimal toBigDecimal(byte[] bytes, int offset, final int length) { if (bytes == null || length < SIZEOF_INT + 1 || (offset + length > bytes.length)) { return null; } int scale = toInt(bytes, offset); byte[] tcBytes = new byte[length - SIZEOF_INT]; System.arraycopy(bytes, offset + SIZEOF_INT, tcBytes, 0, length - SIZEOF_INT); return new BigDecimal(new BigInteger(tcBytes), scale); } /** * Put a BigDecimal value out to the specified byte array position. * * @param bytes * the byte array * @param offset * position in the array * @param val * BigDecimal to write out * @return incremented offset */ public static int putBigDecimal(byte[] bytes, int offset, BigDecimal val) { if (bytes == null) { return offset; } byte[] valueBytes = val.unscaledValue().toByteArray(); byte[] result = new byte[valueBytes.length + SIZEOF_INT]; offset = putInt(result, offset, val.scale()); return putBytes(result, offset, valueBytes, 0, valueBytes.length); } /** * @param left * left operand * @param right * right operand * @return 0 if equal, < 0 if left is less than right, etc. */ public static int compareTo(final byte[] left, final byte[] right) { return LexicographicalComparerHolder.BEST_COMPARER.compareTo(left, 0, left.length, right, 0, right.length); } /** * Lexicographically compare two arrays. * * @param buffer1 * left operand * @param buffer2 * right operand * @param offset1 * Where to start comparing in the left buffer * @param offset2 * Where to start comparing in the right buffer * @param length1 * How much to compare from the left buffer * @param length2 * How much to compare from the right buffer * @return 0 if equal, < 0 if left is less than right, etc. */ public static int compareTo(byte[] buffer1, int offset1, int length1, byte[] buffer2, int offset2, int length2) { return LexicographicalComparerHolder.BEST_COMPARER.compareTo(buffer1, offset1, length1, buffer2, offset2, length2); } interface Comparer<T> { int compareTo(T buffer1, int offset1, int length1, T buffer2, int offset2, int length2); } static Comparer<byte[]> lexicographicalComparerJavaImpl() { return LexicographicalComparerHolder.PureJavaComparer.INSTANCE; } /** * Provides a lexicographical comparer implementation; either a Java * implementation or a faster implementation based on {@link Unsafe}. * * <p> * Uses reflection to gracefully fall back to the Java implementation if * {@code Unsafe} isn't available. */ static class LexicographicalComparerHolder { static final String UNSAFE_COMPARER_NAME = LexicographicalComparerHolder.class.getName() + "$UnsafeComparer"; static final Comparer<byte[]> BEST_COMPARER = getBestComparer(); /** * Returns the Unsafe-using Comparer, or falls back to the pure-Java * implementation if unable to do so. */ static Comparer<byte[]> getBestComparer() { try { Class<?> theClass = Class.forName(UNSAFE_COMPARER_NAME); // yes, UnsafeComparer does implement Comparer<byte[]> @SuppressWarnings("unchecked") Comparer<byte[]> comparer = (Comparer<byte[]>) theClass.getEnumConstants()[0]; return comparer; } catch (Throwable t) { // ensure we really catch *everything* return lexicographicalComparerJavaImpl(); } } enum PureJavaComparer implements Comparer<byte[]> { INSTANCE; @Override public int compareTo(byte[] buffer1, int offset1, int length1, byte[] buffer2, int offset2, int length2) { // Short circuit equal case if (buffer1 == buffer2 && offset1 == offset2 && length1 == length2) { return 0; } // Bring WritableComparator code local int end1 = offset1 + length1; int end2 = offset2 + length2; for (int i = offset1, j = offset2; i < end1 && j < end2; i++, j++) { int a = (buffer1[i] & 0xff); int b = (buffer2[j] & 0xff); if (a != b) { return a - b; } } return length1 - length2; } } enum UnsafeComparer implements Comparer<byte[]> { INSTANCE; static final Unsafe theUnsafe; /** The offset to the first element in a byte array. */ static final int BYTE_ARRAY_BASE_OFFSET; static { if (UNSAFE_UNALIGNED) { theUnsafe = UnsafeAccess.theUnsafe; } else { // It doesn't matter what we throw; // it's swallowed in getBestComparer(). throw new Error(); } BYTE_ARRAY_BASE_OFFSET = theUnsafe.arrayBaseOffset(byte[].class); // sanity check - this should never fail if (theUnsafe.arrayIndexScale(byte[].class) != 1) { throw new AssertionError(); } } static final boolean littleEndian = ByteOrder.nativeOrder().equals(ByteOrder.LITTLE_ENDIAN); /** * Returns true if x1 is less than x2, when both values are treated * as unsigned long. Both values are passed as is read by Unsafe. * When platform is Little Endian, have to convert to corresponding * Big Endian value and then do compare. We do all writes in Big * Endian format. */ static boolean lessThanUnsignedLong(long x1, long x2) { if (littleEndian) { x1 = Long.reverseBytes(x1); x2 = Long.reverseBytes(x2); } return (x1 + Long.MIN_VALUE) < (x2 + Long.MIN_VALUE); } /** * Returns true if x1 is less than x2, when both values are treated * as unsigned int. Both values are passed as is read by Unsafe. * When platform is Little Endian, have to convert to corresponding * Big Endian value and then do compare. We do all writes in Big * Endian format. */ static boolean lessThanUnsignedInt(int x1, int x2) { if (littleEndian) { x1 = Integer.reverseBytes(x1); x2 = Integer.reverseBytes(x2); } return (x1 & 0xffffffffL) < (x2 & 0xffffffffL); } /** * Returns true if x1 is less than x2, when both values are treated * as unsigned short. Both values are passed as is read by Unsafe. * When platform is Little Endian, have to convert to corresponding * Big Endian value and then do compare. We do all writes in Big * Endian format. */ static boolean lessThanUnsignedShort(short x1, short x2) { if (littleEndian) { x1 = Short.reverseBytes(x1); x2 = Short.reverseBytes(x2); } return (x1 & 0xffff) < (x2 & 0xffff); } /** * Checks if Unsafe is available * * @return true, if available, false - otherwise */ public static boolean isAvailable() { return theUnsafe != null; } /** * Lexicographically compare two arrays. * * @param buffer1 * left operand * @param buffer2 * right operand * @param offset1 * Where to start comparing in the left buffer * @param offset2 * Where to start comparing in the right buffer * @param length1 * How much to compare from the left buffer * @param length2 * How much to compare from the right buffer * @return 0 if equal, < 0 if left is less than right, etc. */ @Override public int compareTo(byte[] buffer1, int offset1, int length1, byte[] buffer2, int offset2, int length2) { // Short circuit equal case if (buffer1 == buffer2 && offset1 == offset2 && length1 == length2) { return 0; } final int minLength = Math.min(length1, length2); final int minWords = minLength / SIZEOF_LONG; final long offset1Adj = offset1 + BYTE_ARRAY_BASE_OFFSET; final long offset2Adj = offset2 + BYTE_ARRAY_BASE_OFFSET; /* * Compare 8 bytes at a time. Benchmarking shows comparing 8 * bytes at a time is no slower than comparing 4 bytes at a time * even on 32-bit. On the other hand, it is substantially faster * on 64-bit. */ // This is the end offset of long parts. int j = minWords << 3; // Same as minWords * SIZEOF_LONG for (int i = 0; i < j; i += SIZEOF_LONG) { long lw = theUnsafe.getLong(buffer1, offset1Adj + (long) i); long rw = theUnsafe.getLong(buffer2, offset2Adj + (long) i); long diff = lw ^ rw; if (diff != 0) { return lessThanUnsignedLong(lw, rw) ? -1 : 1; } } int offset = j; if (minLength - offset >= SIZEOF_INT) { int il = theUnsafe.getInt(buffer1, offset1Adj + offset); int ir = theUnsafe.getInt(buffer2, offset2Adj + offset); if (il != ir) { return lessThanUnsignedInt(il, ir) ? -1 : 1; } offset += SIZEOF_INT; } if (minLength - offset >= SIZEOF_SHORT) { short sl = theUnsafe.getShort(buffer1, offset1Adj + offset); short sr = theUnsafe.getShort(buffer2, offset2Adj + offset); if (sl != sr) { return lessThanUnsignedShort(sl, sr) ? -1 : 1; } offset += SIZEOF_SHORT; } if (minLength - offset == 1) { int a = (buffer1[(int) (offset1 + offset)] & 0xff); int b = (buffer2[(int) (offset2 + offset)] & 0xff); if (a != b) { return a - b; } } return length1 - length2; } } } /** * @param left * left operand * @param right * right operand * @return True if equal */ public static boolean equals(final byte[] left, final byte[] right) { // Could use Arrays.equals? // noinspection SimplifiableConditionalExpression if (left == right) return true; if (left == null || right == null) return false; if (left.length != right.length) return false; if (left.length == 0) return true; // Since we're often comparing adjacent sorted data, // it's usual to have equal arrays except for the very last byte // so check that first if (left[left.length - 1] != right[right.length - 1]) return false; return compareTo(left, right) == 0; } public static boolean equals(final byte[] left, int leftOffset, int leftLen, final byte[] right, int rightOffset, int rightLen) { // short circuit case if (left == right && leftOffset == rightOffset && leftLen == rightLen) { return true; } // different lengths fast check if (leftLen != rightLen) { return false; } if (leftLen == 0) { return true; } // Since we're often comparing adjacent sorted data, // it's usual to have equal arrays except for the very last byte // so check that first if (left[leftOffset + leftLen - 1] != right[rightOffset + rightLen - 1]) return false; return LexicographicalComparerHolder.BEST_COMPARER.compareTo(left, leftOffset, leftLen, right, rightOffset, rightLen) == 0; } /** * @param a * left operand * @param buf * right operand * @return True if equal */ public static boolean equals(byte[] a, ByteBuffer buf) { if (a == null) return buf == null; if (buf == null) return false; if (a.length != buf.remaining()) return false; // Thou shalt not modify the original byte buffer in what should be read // only operations. ByteBuffer b = buf.duplicate(); for (byte anA : a) { if (anA != b.get()) { return false; } } return true; } /** * Return true if the byte array on the right is a prefix of the byte array * on the left. */ public static boolean startsWith(byte[] bytes, byte[] prefix) { return bytes != null && prefix != null && bytes.length >= prefix.length && LexicographicalComparerHolder.BEST_COMPARER.compareTo(bytes, 0, prefix.length, prefix, 0, prefix.length) == 0; } /** * @param a * lower half * @param b * upper half * @return New array that has a in lower half and b in upper half. */ public static byte[] add(final byte[] a, final byte[] b) { return add(a, b, EMPTY_BYTE_ARRAY); } /** * @param a * first third * @param b * second third * @param c * third third * @return New array made from a, b and c */ public static byte[] add(final byte[] a, final byte[] b, final byte[] c) { byte[] result = new byte[a.length + b.length + c.length]; System.arraycopy(a, 0, result, 0, a.length); System.arraycopy(b, 0, result, a.length, b.length); System.arraycopy(c, 0, result, a.length + b.length, c.length); return result; } /** * @param arrays * all the arrays to concatenate together. * @return New array made from the concatenation of the given arrays. */ public static byte[] add(final byte[][] arrays) { int length = 0; for (int i = 0; i < arrays.length; i++) { length += arrays[i].length; } byte[] result = new byte[length]; int index = 0; for (int i = 0; i < arrays.length; i++) { System.arraycopy(arrays[i], 0, result, index, arrays[i].length); index += arrays[i].length; } return result; } /** * @param a * array * @param length * amount of bytes to grab * @return First <code>length</code> bytes from <code>a</code> */ public static byte[] head(final byte[] a, final int length) { if (a.length < length) { return null; } byte[] result = new byte[length]; System.arraycopy(a, 0, result, 0, length); return result; } /** * @param a * array * @param length * amount of bytes to snarf * @return Last <code>length</code> bytes from <code>a</code> */ public static byte[] tail(final byte[] a, final int length) { if (a.length < length) { return null; } byte[] result = new byte[length]; System.arraycopy(a, a.length - length, result, 0, length); return result; } /** * @param a * array * @param length * new array size * @return Value in <code>a</code> plus <code>length</code> prepended 0 * bytes */ public static byte[] padHead(final byte[] a, final int length) { byte[] padding = new byte[length]; for (int i = 0; i < length; i++) { padding[i] = 0; } return add(padding, a); } /** * @param a * array * @param length * new array size * @return Value in <code>a</code> plus <code>length</code> appended 0 bytes */ public static byte[] padTail(final byte[] a, final int length) { byte[] padding = new byte[length]; for (int i = 0; i < length; i++) { padding[i] = 0; } return add(a, padding); } /** * Split passed range. Expensive operation relatively. Uses BigInteger math. * Useful splitting ranges for MapReduce jobs. * * @param a * Beginning of range * @param b * End of range * @param num * Number of times to split range. Pass 1 if you want to split * the range in two; i.e. one split. * @return Array of dividing values */ public static byte[][] split(final byte[] a, final byte[] b, final int num) { return split(a, b, false, num); } /** * Split passed range. Expensive operation relatively. Uses BigInteger math. * Useful splitting ranges for MapReduce jobs. * * @param a * Beginning of range * @param b * End of range * @param inclusive * Whether the end of range is prefix-inclusive or is considered * an exclusive boundary. Automatic splits are generally * exclusive and manual splits with an explicit range utilize an * inclusive end of range. * @param num * Number of times to split range. Pass 1 if you want to split * the range in two; i.e. one split. * @return Array of dividing values */ public static byte[][] split(final byte[] a, final byte[] b, boolean inclusive, final int num) { byte[][] ret = new byte[num + 2][]; int i = 0; Iterable<byte[]> iter = iterateOnSplits(a, b, inclusive, num); if (iter == null) return null; for (byte[] elem : iter) { ret[i++] = elem; } return ret; } /** * Iterate over keys within the passed range, splitting at an [a,b) * boundary. */ public static Iterable<byte[]> iterateOnSplits(final byte[] a, final byte[] b, final int num) { return iterateOnSplits(a, b, false, num); } /** * Iterate over keys within the passed range. */ public static Iterable<byte[]> iterateOnSplits(final byte[] a, final byte[] b, boolean inclusive, final int num) { byte[] aPadded; byte[] bPadded; if (a.length < b.length) { aPadded = padTail(a, b.length - a.length); bPadded = b; } else if (b.length < a.length) { aPadded = a; bPadded = padTail(b, a.length - b.length); } else { aPadded = a; bPadded = b; } if (compareTo(aPadded, bPadded) >= 0) { throw new IllegalArgumentException("b <= a"); } if (num <= 0) { throw new IllegalArgumentException("num cannot be <= 0"); } byte[] prependHeader = { 1, 0 }; final BigInteger startBI = new BigInteger(add(prependHeader, aPadded)); final BigInteger stopBI = new BigInteger(add(prependHeader, bPadded)); BigInteger diffBI = stopBI.subtract(startBI); if (inclusive) { diffBI = diffBI.add(BigInteger.ONE); } final BigInteger splitsBI = BigInteger.valueOf(num + 1); // when diffBI < splitBI, use an additional byte to increase diffBI if (diffBI.compareTo(splitsBI) < 0) { byte[] aPaddedAdditional = new byte[aPadded.length + 1]; byte[] bPaddedAdditional = new byte[bPadded.length + 1]; for (int i = 0; i < aPadded.length; i++) { aPaddedAdditional[i] = aPadded[i]; } for (int j = 0; j < bPadded.length; j++) { bPaddedAdditional[j] = bPadded[j]; } aPaddedAdditional[aPadded.length] = 0; bPaddedAdditional[bPadded.length] = 0; return iterateOnSplits(aPaddedAdditional, bPaddedAdditional, inclusive, num); } final BigInteger intervalBI; try { intervalBI = diffBI.divide(splitsBI); } catch (Exception e) { // LOG.error("Exception caught during division", e); logger.log(Level.SEVERE, "Exception caught during division", e); return null; } final Iterator<byte[]> iterator = new Iterator<byte[]>() { private int i = -1; @Override public boolean hasNext() { return i < num + 1; } @Override public byte[] next() { i++; if (i == 0) return a; if (i == num + 1) return b; BigInteger curBI = startBI.add(intervalBI.multiply(BigInteger.valueOf(i))); byte[] padded = curBI.toByteArray(); if (padded[1] == 0) padded = tail(padded, padded.length - 2); else padded = tail(padded, padded.length - 1); return padded; } @Override public void remove() { throw new UnsupportedOperationException(); } }; return new Iterable<byte[]>() { @Override public Iterator<byte[]> iterator() { return iterator; } }; } /** * @param bytes * array to hash * @param offset * offset to start from * @param length * length to hash */ public static int hashCode(byte[] bytes, int offset, int length) { int hash = 1; for (int i = offset; i < offset + length; i++) hash = (31 * hash) + (int) bytes[i]; return hash; } /** * @param t * operands * @return Array of byte arrays made from passed array of Text */ public static byte[][] toByteArrays(final String[] t) { byte[][] result = new byte[t.length][]; for (int i = 0; i < t.length; i++) { result[i] = toBytes(t[i]); } return result; } /** * @param t * operands * @return Array of binary byte arrays made from passed array of binary * strings */ public static byte[][] toBinaryByteArrays(final String[] t) { byte[][] result = new byte[t.length][]; for (int i = 0; i < t.length; i++) { result[i] = toBytesBinary(t[i]); } return result; } /** * @param column * operand * @return A byte array of a byte array where first and only entry is * <code>column</code> */ public static byte[][] toByteArrays(final String column) { return toByteArrays(toBytes(column)); } /** * @param column * operand * @return A byte array of a byte array where first and only entry is * <code>column</code> */ public static byte[][] toByteArrays(final byte[] column) { byte[][] result = new byte[1][]; result[0] = column; return result; } } class UnsafeAvailChecker { static final Logger logger = Logger.getLogger(UnsafeAvailChecker.class.getName()); private static final String CLASS_NAME = "sun.misc.Unsafe"; private static boolean avail = false; private static boolean unaligned = false; static { avail = AccessController.doPrivileged(new PrivilegedAction<Boolean>() { @Override public Boolean run() { try { Class<?> clazz = Class.forName(CLASS_NAME); Field f = clazz.getDeclaredField("theUnsafe"); f.setAccessible(true); return f.get(null) != null; } catch (Throwable e) { logger.log(Level.WARNING, "sun.misc.Unsafe is not available/accessible", e); } return false; } }); // When Unsafe itself is not available/accessible consider unaligned as // false. if (avail) { try { // Using java.nio.Bits#unaligned() to check for unaligned-access // capability Class<?> clazz = Class.forName("java.nio.Bits"); Method m = clazz.getDeclaredMethod("unaligned"); m.setAccessible(true); unaligned = (Boolean) m.invoke(null); } catch (Exception e) { logger.log(Level.WARNING, "java.nio.Bits#unaligned() check failed." + "Unsafe based read/write of primitive types won't be used", e); } } } /** * @return true when running JVM is having sun's Unsafe package available in * it and underlying system having unaligned-access capability. */ public static boolean unaligned() { return unaligned; } } @SuppressWarnings("restriction") final class UnsafeAccess { static final Logger logger = Logger.getLogger(UnsafeAccess.class.getName()); public static final Unsafe theUnsafe; static { theUnsafe = (Unsafe) AccessController.doPrivileged(new PrivilegedAction<Object>() { @Override public Object run() { try { Field f = Unsafe.class.getDeclaredField("theUnsafe"); f.setAccessible(true); return f.get(null); } catch (Throwable e) { logger.log(Level.WARNING, "sun.misc.Unsafe is not accessible", e); } return null; } }); } }