这里主要介绍std::unique_lock与std::lock_guard的区别用法
先说简单的
一、std::lock_guard的用法
std::lock_guard其实就是简单的RAII封装,在构造函数中进行加锁,析构函数中进行解锁,这样可以保证函数退出时,锁一定被释放。
简单来说,就是防止开发者粗心大意,函数在分支中return时,忘记unlock操作导致后续操作全部被挂起甚至引发死锁情况的。
用法如下:
// lock_guard example #include <iostream> // std::cout #include <thread> // std::thread #include <mutex> // std::mutex, std::lock_guard #include <stdexcept> // std::logic_error std::mutex mtx; void print_even (int x) { if (x%2==0) std::cout << x << " is even "; else throw (std::logic_error("not even")); } void print_thread_id (int id) { try { // using a local lock_guard to lock mtx guarantees unlocking on destruction / exception: std::lock_guard<std::mutex> lck (mtx); print_even(id); } catch (std::logic_error&) { std::cout << "[exception caught] "; } } int main () { std::thread threads[10]; // spawn 10 threads: for (int i=0; i<10; ++i) threads[i] = std::thread(print_thread_id,i+1); for (auto& th : threads) th.join(); return 0; }
二、std::unique_lock的用法
std::unique_lock的功能相比std::lock_guard来说,就强大多了,是std::lock_guard的功能超集, 封装了各种加锁操作,阻塞的,非阻塞的,还可以结合条件变量一起使用,基本上对锁的各种操作都封装了,当然了,功能丰富是有代价的,那就是性能和内存开销都比std::lock_guard大得多,所以,需要有选择地使用。
std::unique_lock也会在析构的时候自动解锁,所以说,是std::lock_guard的功能超集。
看看std::unique_lock的构造函数,支持三种加锁模式:
unique_lock( mutex_type& m, std::defer_lock_t t ); //延迟加锁 unique_lock( mutex_type& m, std::try_to_lock_t t ); //尝试加锁 unique_lock( mutex_type& m, std::adopt_lock_t t ); //马上加锁
几个主要操作函数:
lock() //阻塞等待加锁 try_lock() // 非阻塞等待加锁 try_lock_for() //在一段时间内尝试加锁 try_lock_until() //在某个时间点之前尝试加锁
接下来,给个例子:
#include <mutex> #include <thread> #include <iostream> #include <vector> #include <chrono> int main() { int counter = 0; std::mutex counter_mutex; std::vector<std::thread> threads; auto worker_task = [&](int id) { std::unique_lock<std::mutex> lock(counter_mutex); ++counter; std::cout << id << ", initial counter: " << counter << ' '; lock.unlock(); // don't hold the lock while we simulate an expensive operation std::this_thread::sleep_for(std::chrono::seconds(1)); lock.lock(); ++counter; std::cout << id << ", final counter: " << counter << ' '; }; for (int i = 0; i < 10; ++i) threads.emplace_back(worker_task, i); for (auto &thread : threads) thread.join(); }
Output:
0, initial counter: 1 1, initial counter: 2 2, initial counter: 3 3, initial counter: 4 4, initial counter: 5 5, initial counter: 6 6, initial counter: 7 7, initial counter: 8 8, initial counter: 9 9, initial counter: 10 6, final counter: 11 3, final counter: 12 4, final counter: 13 2, final counter: 14 5, final counter: 15 0, final counter: 16 1, final counter: 17 7, final counter: 18 9, final counter: 19 8, final counter: 20