• 9.3 使用Open Zipkin进行分布式跟踪


     
        具有关联ID的统一日志记录平台是一个强大的调试工具。但是,在本章的剩余部分中,我们将不再关注如何跟踪日志条目,而是关注如何跨不同微服务可视化事务流。一张干净简洁的图片比一百万条日志条目有用。
    分布式跟踪涉及提供一张可视化的图片,说明事务如何流经不同的微服务。分布式跟踪工具还将对单个微服务响应时间作出粗略的估计。但是,分布式跟踪工具不应该与成熟的应用程序性能管理(Application Performance Management,APM)包混淆。这些包可以为服务中的实际代码提供开箱即用的低级性能数据,除了提供响应时间,它还能提供其他性能数据,如内存利用率、CPU利用率和I/O利用率。
        这就是Spring Cloud Sleuth和OpenZipkin(也称为Zipkin)项目的亮点。Zipkin是一个分布式跟踪平台,可用于跟踪跨多个服务调用的事务。Zipkin允许开发人员以图形方式查看事务占用的时间量,并分解在调用中涉及的每个微服务所用的时间。在微服务架构中,Zipkin是识别性能问题的宝贵工具。
        建立Spring Cloud Sleuth和Zipkin涉及4项操作:
        将Spring Cloud Sleuth和Zipkin JAR文件添加到捕获跟踪数据的服务中;
        在每个服务中配置Spring属性以指向收集跟踪数据的Zipkin服务器;
        安装和配置Zipkin服务器以收集数据;
        定义每个客户端所使用的采样策略,便于向Zipkin发送跟踪信息。
        
    9.3.1 添加Spring Cloud Sleuth和Zipkin依赖项
     
    到目前为止,我们已经将两个Maven依赖项包含到Zuul服务、许可证服务以及组织服务中。这些JAR文件是 spring-cloud-starter-sleuth和spring-cloud-sleuth-core依赖项。spring-cloud-starter-sleuth依赖项用于包含在服务中启用Spring Cloud Sleuth所需的基本Spring Cloud Sleuth库。当开发人员必须要以编程方式与Spring Cloud Sleuth进行交互时,就需要使用 spring-cloud-sleuth-core依赖项(本章后面将再次使用它)。
        要与Zipkin集成,需要添加第二个Maven依赖项,名为spring-cloud-sleuth-zipkin。代码清单9-3展示了添加spring-cloud-sleuth-zipkin依赖项后,在Zuul、许可证以及组织服务中应该存在的Maven条目。
        
    代码清单9-3 客户端的Spring Cloud Sleuth和Zipkin依赖项
        
    <dependency>   
    <groupId>org.springframework.cloud</groupId>   
    <artifactId>spring-cloud-starter-sleuth</artifactId> 
    </dependency> 
    <dependency>   
    <groupId>org.springframework.cloud</groupId>   
    <artifactId>spring-cloud-sleuth-zipkin</artifactId> 
    </dependency>
        
    9.3.2 配置服务以指向Zipkin
        有了JAR文件,接下来就需要配置想要与Zipkin进行通信的每一项服务。这项任务可以通过设置一个Spring属性spring.zipkin.baseUrl来完成,该属性定义了用于与Zipkin通信的URL,它设置在每个服务的application.yml属性文件中。
        
    注意
        
    spring.zipkin.baseUrl也可以作为Spring Cloud Config中的属性进行外部化。
        
    在每个服务的application.yml文件中,将该值设置为http://localhost:9411。但是,在运行时,我使用在每个服务的Docker配置文件(docker/common/docker-compose.yml)上传递的ZIPKIN_URI(http://zipkin:9411)变量来覆盖这个值。
        
    Zipkin、RabbitMQ与Kafka
        Zipkin确实有能力通过RabbitMQ或Kafka将其跟踪数据发送到Zipkin服务器。从功能的角度来看,不管使用HTTP、RabbitMQ还是Kafka,Zipkin的行为没有任何差异。通过使用HTTP跟踪,Zipkin使用异步线程发送性能数据。另外,使用RabbitMQ或Kafka来收集跟踪数据的主要优势是,如果Zipkin服务器关闭,任何发送给Zipkin的跟踪信息都将“排队”,直到Zipkin能够收集到数据。
        Spring Cloud Sleuth通过RabbitMQ和Kafka向Zipkin发送数据的配置在Spring Cloud Sleuth文档中有介绍,因此本章将不再赘述。
        9.3.3 安装和配置Zipkin服务器
        要使用Zipkin,首先需要按照本书多次所做的那样建立一个Spring Boot项目(本章的项目名为 zipkinsvr)。接下来,需要向zipkinsvr/pom.xml文件添加两个JAR依赖项。代码清单9-4展示了这两个JAR依赖项。
     
    代码清单9-4 Zipkin服务所需的JAR依赖项
        
    <dependency>   
    <groupId>io.zipkin.java</groupId>   
    <artifactId>zipkin-server</artifactId>  ⇽--- 这个依赖项包含用于创建Zipkin服务器所需的核心类 
    </dependency>  
    <dependency>   
    <groupId>io.zipkin.java</groupId>   
    <artifactId>zipkin-autoconfigure-ui</artifactId>  ⇽--- 这个依赖项包含用于运行Zipkin服务器的UI部分所需的核心类 </dependency>
        
    选择@EnableZipkinServer还是@EnableZipkinStreamServer
        
    关于上述JAR依赖项,有一件事需要注意,那就是它们不是基于Spring Cloud的依赖项。虽然Zipkin是一个基于Spring Boot的项目,但是@EnableZipkinServer并不是一个Spring Cloud注解,它是Zipkin项目的一部分。这通常会让Spring Cloud Sleuth和Zipkin的新手混淆,因为Spring Cloud团队确实编写了@EnableZipkinStreamServer注解作为Spring Cloud Sleuth的一部分,它简化了Zipkin与RabbitMQ和Kafka的使用。
        
    我选择使用@EnableZipkinServer是因为对本章来说它创建简单。使用@EnableZipkinStreamServer需要创建和配置正在跟踪的服务以发布消息到RabbitMQ或Kafka,此外,还需要设置和配置Zipkin服务器来监听RabbitMQ或Kafka,以此来跟踪数据。@EnableZipkinStreamServer注解的优点是,即使Zipkin服务器不可用,也可以继续收集跟踪数据。这是因为跟踪消息将在消息队列中累积跟踪数据,直到Zipkin服务器可用于处理消息记录。如果使用了@EnableZipkinServer注解,而Zipkin服务器不可用,那么服务发送给Zipkin的跟踪数据将会丢失。
     
    在定义完JAR依赖项之后,现在需要将@EnableZipkinServer注解添加到Zipkin服务引导类中。这个类位于zipkinsvr/src/main/java/com/thoughtmechanix/zipkinsvr/ZipkinServerApplication.java中。代码清单9-5展示了引导类的代码。
        
    代码清单9-5 构建Zipkin服务器引导类
    package com.thoughtmechanix.zipkinsvr;
     
    import org.springframework.boot.SpringApplication;
    import org.springframework.boot.autoconfigure.SpringBootApplication;
    import zipkin.server.EnableZipkinServer;
    ⇽--- @EnableZipkinServer 允许快速启动Zipkin作为Spring Boot项目
    @SpringBootApplication
    @EnableZipkinServer
    public class ZipkinServerApplication {
        public static void main(String[] args) {
            SpringApplication.run(ZipkinServerApplication.class, args);
        }
    }
        
    在代码清单9-5中要注意的关键点是@EnableZipkinServer注解的使用。这个注解能够启动这个Spring Boot服务作为一个Zipkin服务器。此时,读者可以构建、编译和启动Zipkin服务器,作为本章的Docker容器之一。
        
    运行Zipkin服务器只需要很少的配置。在运行Zipkin服务器时,唯一需要配置的东西,就是Zipkin存储来自服务的跟踪数据的后端数据存储。Zipkin支持4种不同的后端数据存储。这些数据存储是:
        (1)内存数据;
        (2)MySQL;
        (3)Cassandra;
        (4)Elasticsearch。
        在默认情况下,Zipkin使用内存数据存储来存储跟踪数据。Zipkin团队建议不要在生产系统中使用内存数据库。内存数据库只能容纳有限的数据,并且在Zipkin服务器关闭或丢失时,数据就会丢失。
        
    注意
        对于本书来讲,我们将使用Zipkin的内存数据存储。配置Zipkin中使用的各个数据存储超出了本书的范围,但是,如果读者对这个主题感兴趣,可以在Zipkin GitHub存储库中查阅更多信息。
     
    9.3.4 设置跟踪级别
        到目前为止,我们已经配置了要与Zipkin服务器通信的客户端,并且已经配置完Zipkin服务器准备运行。在开始使用Zipkin之前,我们还需要再做一件事情,那就是定义每个服务应该向Zipkin写入数据的频率。
        在默认情况下,Zipkin只会将所有事务的10%写入Zipkin服务器。可以通过在每一个向Zipkin发送数据的服务上设置一个Spring属性来控制事务采样。这个属性叫spring.sleuth.sampler.percentage,它的值介于0和1之间。
        值为0表示Spring Cloud Sleuth不会发送任何事务数据。
        值为0.5表示Spring Cloud Sleuth将发送所有事务的50%。
        对于本章来讲,我们将为所有服务发送跟踪信息。要做到这一点,我们可以设置spring.sleuth.sampler.percentage的值,也可以使用AlwaysSampler替换Spring Cloud Sleuth中使用的默认Sampler类。AlwaysSampler可以作为Spring Bean注入应用程序中。例如,许可证服务在licensing-service/src/main/java/com/thoughtmechanix/licenses/Application.java 中将AlwaysSampler定义为Spring Bean。
        
    @Bean 
    public Sampler defaultSampler() { return new AlwaysSampler();}
        
    Zuul服务、许可证服务和组织服务都定义了AlwaysSampler,因此在本章中,所有的事务都会被Zipkin跟踪。
    spring cloud zipkin elk
     
     
     
  • 相关阅读:
    up_modembin.sh
    cpu主频信息
    计算机网络中通信协议都有哪些
    可导与连续的关系
    linux块设备驱动之实例
    CentOs 设置静态IP 方法
    phalcon:非空字段不能在beforeCreate赋值,可以改用beforeValidationOnCreate
    phalcon: crypt-encrypt/decrypt用法
    phalcon: 缓存片段,文件缓存,memcache缓存
    phalcon: 视图分层渲染,或包含其他页面
  • 原文地址:https://www.cnblogs.com/mongotea/p/11975331.html
Copyright © 2020-2023  润新知