• [P1361] 小M的作物


    [P1361] 小M的作物 - 最小割

    Description

    两块巨大的耕地A和B,有n种作物的种子每种作物的种子有1个,第i种作物种植在A中种植可以获得ai的收益,在B中种植可以获得bi的收益。共有m种作物组合,第i个组合中的作物共同种在A中可以获得c1i的额外收益,共同总在B中可以获得c2i的额外收益。求种植的最大收益。

    Solution

    经典模型

    基础部分:每个作物建点,S 向作物连边,边权为 bi,如果割了这条边表示这个作物种在 A 内;作物向 T 连边,边权为 ai,如果割了这条边表示这个作物种在 B 内

    因为任意一条 S->T 路径上至少有一条边会被割掉,而这里每条路径上都恰好只有两条边,所以就相当于每个作物会选择自己在 A 内(割与 S 相连的边)或者选择自己在 B 内

    扩展部分:对每个组合建立两个点 G,G',S->G 边权为 c2i,如果割掉这条边表示这个组合不全在 A 内;G'->T 边权为 c1i,如果割掉这条边表示这个组合不全在 B 内;G->gi,gi->G',边权为无穷,这些边不可被割

    称 S->G 为 g, G'->T 为 g'
    现在假设 g 不被割去,那么 S->g->G->infty->gi,那么此时所有 gi->T 就必须被割去,同时 g' 也必须被割去,这就意味着,如果你要求这个组合在 A 内生效,那么任意一个元素都不能种在 B,同时这个组合在 B 内也是无效的。
    这就说明,如果 g 不被割去,其对应的含义和约束是满足题意的,对 g' 也同理。如果被割去,那么点 G 可以视为不存在,直接转化为基础部分的情况。这样就很粗糙地证明了这个过程的正确性

    #include <bits/stdc++.h>
    using namespace std;
    
    #define int long long
    
    #ifndef __FLOW_HPP__
    #define __FLOW_HPP__
    
    // v1.1     feat. edge query for Maxf
    
    #include <bits/stdc++.h>
    using namespace std;
    #define int long long
    
    namespace flowsolution
    {
        const int N = 100005;
        const int M = 2500005;
        const int inf = 1e+12;
    
        struct MaxflowSolution
        {
            int *dis, ans, cnt = 1, s, t, *pre, *next, *head, *val;
    
            MaxflowSolution()
            {
                cnt = 1;
                dis = new int[N];
                pre = new int[M];
                next = new int[M];
                head = new int[N];
                val = new int[M];
                fill(dis, dis + N, 0);
                fill(pre, pre + M, 0);
                fill(next, next + M, 0);
                fill(head, head + N, 0);
                fill(val, val + M, 0);
            }
    
            ~MaxflowSolution()
            {
                delete[] dis;
                delete[] pre;
                delete[] next;
                delete[] head;
                delete[] val;
            }
    
            std::queue<int> q;
            int make(int x, int y, int z)
            {
                pre[++cnt] = y, next[cnt] = head[x], head[x] = cnt, val[cnt] = z;
                int ret = cnt;
                pre[++cnt] = x, next[cnt] = head[y], head[y] = cnt;
                return ret;
            }
    
            int get_value(int x)
            {
                return val[x];
            }
    
            bool bfs()
            {
                fill(dis, dis + N, 0);
                q.push(s), dis[s] = 1;
                while (!q.empty())
                {
                    int x = q.front();
                    q.pop();
                    for (int i = head[x]; i; i = next[i])
                        if (!dis[pre[i]] && val[i])
                            dis[pre[i]] = dis[x] + 1, q.push(pre[i]);
                }
                return dis[t];
            }
    
            int dfs(int x, int flow)
            {
                if (x == t || !flow)
                    return flow;
                int f = flow;
                for (int i = head[x]; i; i = next[i])
                    if (val[i] && dis[pre[i]] > dis[x])
                    {
                        int y = dfs(pre[i], min(val[i], f));
                        f -= y, val[i] -= y, val[i ^ 1] += y;
                        if (!f)
                            return flow;
                    }
                if (f == flow)
                    dis[x] = -1;
                return flow - f;
            }
    
            int solve(int _s, int _t)
            {
                s = _s;
                t = _t;
                ans = 0;
                for (; bfs(); ans += dfs(s, inf))
                    ;
                return ans;
            }
        };
    
        struct CostflowSolution
        {
            struct Edge
            {
                int p = 0, c = 0, w = 0, next = -1;
            } * e;
            int s, t, tans, ans, cost, ind, *bus, qhead = 0, qtail = -1, *qu, *vis, *dist;
    
            CostflowSolution()
            {
                e = new Edge[M];
                qu = new int[M];
                bus = new int[N];
                vis = new int[N];
                dist = new int[N];
                fill(qu, qu + M, 0);
                fill(bus, bus + N, -1);
                fill(vis, vis + N, 0);
                fill(dist, dist + N, 0);
                ind = 0;
            }
    
            ~CostflowSolution()
            {
                delete[] e;
                delete[] qu;
                delete[] vis;
                delete[] dist;
            }
    
            void graph_link(int p, int q, int c, int w)
            {
                e[ind].p = q;
                e[ind].c = c;
                e[ind].w = w;
                e[ind].next = bus[p];
                bus[p] = ind;
                ++ind;
            }
    
            void make(int p, int q, int c, int w)
            {
                graph_link(p, q, c, w);
                graph_link(q, p, 0, -w);
            }
    
            int dinic_spfa()
            {
                qhead = 0;
                qtail = -1;
                fill(vis, vis + N, 0);
                fill(dist, dist + N, inf);
                vis[s] = 1;
                dist[s] = 0;
                qu[++qtail] = s;
                while (qtail >= qhead)
                {
                    int p = qu[qhead++];
                    vis[p] = 0;
                    for (int i = bus[p]; i != -1; i = e[i].next)
                        if (dist[e[i].p] > dist[p] + e[i].w && e[i].c > 0)
                        {
                            dist[e[i].p] = dist[p] + e[i].w;
                            if (vis[e[i].p] == 0)
                                vis[e[i].p] = 1, qu[++qtail] = e[i].p;
                        }
                }
                return dist[t] < inf;
            }
    
            int dinic_dfs(int p, int lim)
            {
                if (p == t)
                    return lim;
                vis[p] = 1;
                int ret = 0;
                for (int i = bus[p]; i != -1; i = e[i].next)
                {
                    int q = e[i].p;
                    if (e[i].c > 0 && dist[q] == dist[p] + e[i].w && vis[q] == 0)
                    {
                        int res = dinic_dfs(q, min(lim, e[i].c));
                        cost += res * e[i].w;
                        e[i].c -= res;
                        e[i ^ 1].c += res;
                        ret += res;
                        lim -= res;
                        if (lim == 0)
                            break;
                    }
                }
                return ret;
            }
    
            pair<int, int> solve(int _s, int _t)
            {
                s = _s;
                t = _t;
                ans = 0;
                cost = 0;
                while (dinic_spfa())
                {
                    fill(vis, vis + N, 0);
                    ans += dinic_dfs(s, inf);
                }
                return make_pair(ans, cost);
            }
        };
    } // namespace flowsolution
    
    #endif
    
    signed main()
    {
        ios::sync_with_stdio(false);
    
        int n;
        cin >> n;
    
        vector<int> a(n + 2);
        vector<int> b(n + 2);
        for (int i = 1; i <= n; i++)
            cin >> a[i];
        for (int i = 1; i <= n; i++)
            cin >> b[i];
    
        int m;
        cin >> m;
    
        int total_fortune = 0;
    
        int s = n + 2 * m + 1, t = n + 2 * m + 2;
        int GROUP_L = n, GROUP_R = n + m;
    
        flowsolution::MaxflowSolution flow;
    
        for (int i = 1; i <= n; i++)
        {
            flow.make(s, i, b[i]);
            flow.make(i, t, a[i]);
            total_fortune += a[i] + b[i];
        }
    
        for (int i = 1; i <= m; i++)
        {
            int k, c1, c2, x;
            cin >> k >> c1 >> c2;
            total_fortune += c1 + c2;
            flow.make(s, GROUP_L + i, c2);
            flow.make(GROUP_R + i, t, c1);
            for (int j = 1; j <= k; j++)
            {
                cin >> x;
                flow.make(GROUP_L + i, x, 1e9);
                flow.make(x, GROUP_R + i, 1e9);
            }
        }
    
        cout << total_fortune - flow.solve(s, t) << endl;
    }
    
  • 相关阅读:
    docker学习
    redis哨兵部署
    HUE中一些重要元数据表的DDL整理
    Autosys中ON_HOLD和ON_ICE的区别
    Spark结构化API的执行过程——Logical Plan & Physical Plan
    关于Spark中Columns的引用方法
    关于Spark Dataset API中的Typed transformations和Untyped transformations
    关于Kafka Consumer 与 Partitions
    使用sed根据变量值注释掉文件中相匹配的记录行
    sqoop export to teradata时出现java.lang.NullPointerException
  • 原文地址:https://www.cnblogs.com/mollnn/p/14352036.html
Copyright © 2020-2023  润新知