Description
给定一张 (n imes m) 的网格图,每个格子可以取值为 (1,2,0)。要求将一些边线染黑,使得所有的 (1,2) 被割开。(n,m le 100)
Solution
最小割,每个点向四周的点连边(1),(S o 1, 2 o T (infty)),对于 (0) 点,只需要将其作为中间点,而不需要考虑其归属。
#include <bits/stdc++.h>
using namespace std;
const int N = 55555, MAXN = 262144;
#define reset(x) memset(x, 0, sizeof x)
struct Graph
{
int n, m, M, S, T, head[N], cur[N], dep[N], gap[N], q[N];
long long ans;
struct ed
{
int to, nxt, val;
} edge[MAXN];
void init(int n0, int m0, int S0, int T0)
{
n = n0, m = m0, S = S0, T = T0, M = 1, reset(gap);
reset(head), reset(cur), reset(dep), reset(q);
}
void _make(int u, int v, int w)
{
edge[++M] = (ed){v, head[u], w}, head[u] = M;
}
void make(int u, int v, int w)
{
_make(u, v, w);
_make(v, u, 0);
}
int dfs(int u, int mx)
{
if (u == T)
return mx;
int num = 0, f;
for (int &i = cur[u], v; i; i = edge[i].nxt)
if (dep[v = edge[i].to] == dep[u] - 1 && (f = edge[i].val))
if (edge[i].val -= (f = dfs(v, min(mx - num, f))), edge[i ^ 1].val += f, (num += f) == mx)
return num;
if (!--gap[dep[u]++])
dep[S] = n + 1;
return ++gap[dep[u]], cur[u] = head[u], num;
}
void solve()
{
for (int i = 1; i <= n; ++i)
cur[i] = head[i];
ans = 0;
for (gap[0] = n; dep[S] <= n; ans += dfs(S, 0x7fffffff))
;
}
} g;
const int di[4] = {0, 0, 1, -1};
const int dj[4] = {1, -1, 0, 0};
signed main()
{
int n, m;
cin >> n >> m;
function<bool(int, int)> check = [&](int i, int j) -> bool {
return i >= 1 && j >= 1 && i <= n && j <= m;
};
function<int()> id_source = [&]() -> int {
return 1;
};
function<int()> id_target = [&]() -> int {
return 2;
};
function<int(int, int)> id_grid = [&](int i, int j) -> int {
return 2 + (i - 1) * m + j;
};
g.init(4*n*m, 0, id_source(), id_target());
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= m; j++)
{
int t;
cin >> t;
if (t == 1)
{
g.make(id_source(), id_grid(i, j), 99999);
}
else if (t == 2)
{
g.make(id_grid(i, j), id_target(), 99999);
}
for (int k = 0; k < 4; k++)
{
int ni = i + di[k];
int nj = j + dj[k];
if (check(ni, nj))
{
g.make(id_grid(i, j), id_grid(ni, nj), 1);
}
}
}
}
g.solve();
cout << g.ans << endl;
}