Description
给定N个点以及每个点的权值,要你处理接下来的M个操作。
操作有4种。操作从0到3编号。点从1到N编号。
0:后接两个整数(x,y),代表询问从x到y的路径上的点的权值的xor和。
保证x到y是联通的。
1:后接两个整数(x,y),代表连接x到y,若x到Y已经联通则无需连接。
2:后接两个整数(x,y),代表删除边(x,y),不保证边(x,y)存在。
3:后接两个整数(x,y),代表将点X上的权值变成Y。
Solution
LCT 模板题
#include <bits/stdc++.h>
using namespace std;
const int N = 300005;
int n,m,val[N],t1,t2,t3;
namespace lct {
int top, q[N], ch[N][2], fa[N], xr[N], rev[N];
inline void pushup(int x){
xr[x]=xr[ch[x][0]]^xr[ch[x][1]]^val[x];
}
inline void pushdown(int x){
if(!rev[x]) return;
rev[ch[x][0]]^=1;
rev[ch[x][1]]^=1;
rev[x]^=1;
swap(ch[x][0],ch[x][1]);
}
inline bool isroot(int x){
return ch[fa[x]][0]!=x && ch[fa[x]][1]!=x;
}
inline void rotate(int p){
int q=fa[p], y=fa[q], x=ch[fa[p]][1]==p;
ch[q][x]=ch[p][x^1]; fa[ch[q][x]]=q;
ch[p][x^1]=q; fa[q]=p; fa[p]=y;
if(y) if(ch[y][0]==q) ch[y][0]=p;
else if(ch[y][1]==q) ch[y][1]=p;
pushup(q); pushup(p);
}
inline void splay(int x){
q[top=1]=x;
for(int i=x;!isroot(i);i=fa[i]) q[++top]=fa[i];
for(int i=top;i;i--) pushdown(q[i]);
for(;!isroot(x);rotate(x))
if(!isroot(fa[x]))
rotate((ch[fa[x]][0]==x)==(ch[fa[fa[x]]][0]==fa[x])?fa[x]:x);
}
void access(int x){
for(int t=0;x;t=x,x=fa[x])
splay(x),ch[x][1]=t,pushup(x);
}
void makeroot(int x){
access(x);
splay(x);
rev[x]^=1;
}
int find(int x){
access(x);
splay(x);
while(ch[x][0]) x=ch[x][0];
return x;
}
void split(int x,int y){
makeroot(x);
access(y);
splay(y);
}
void cut(int x,int y){
split(x,y);
if(ch[y][0]==x)
ch[y][0]=0, fa[x]=0;
}
void link(int x,int y){
makeroot(x);
fa[x]=y;
}
int query(int x,int y) {
split(x,y);
return xr[y];
}
}
int main(){
ios::sync_with_stdio(false);
cin>>n>>m;
for(int i=1;i<=n;i++) {
cin>>val[i];
}
for(int i=1;i<=m;i++) {
int t1,t2,t3;
cin>>t1>>t2>>t3;
if(t1==0) {
cout<<lct::query(t2,t3)<<endl;
}
if(t1==1) {
lct::link(t2,t3);
}
if(t1==2) {
lct::cut(t2,t3);
}
if(t1==3) {
lct::split(t2,t2);
val[t2]=t3;
lct::pushup(t2);
}
}
}