[Codechef TASTR] Level of Difference
Description
给定两个字符串,求恰好在一个字符串中出现过的本质不同的子串数量。
Solution
设 (U(S)) 表示在 (S) 中出现过的本质不同的子串集合,那么答案集合 (A)
[A = U(P) + U(Q) - 2 U(P) cap U(Q)
]
[|A| = |U(P)| + |U(Q)| - 2 |U(P) cap U(Q)|
]
根据容斥原理
[U(P) cap U(Q) = U(P) + U(Q) - U(P) cup U(Q)
]
于是
[|A| = 2 |U(P) cup U(Q)| - U(P) - U(Q)
]
#include <bits/stdc++.h>
using namespace std;
#define int long long
struct sa
{
int n,m=256,sa[1000005],y[1000005],u[1000005],v[1000005],o[1000005],r[1000005],h[1000005],T;
char str[1000005];
long long ans;
int cal()
{
memset(sa,0,sizeof sa);
memset(y,0,sizeof y);
memset(u,0,sizeof u);
memset(v,0,sizeof v);
memset(o,0,sizeof o);
memset(r,0,sizeof r);
memset(h,0,sizeof h);
n=strlen(str+1);
for(int i=1; i<=n; i++) u[str[i]]++;
for(int i=1; i<=m; i++) u[i]+=u[i-1];
for(int i=n; i>=1; i--) sa[u[str[i]]--]=i;
r[sa[1]]=1;
for(int i=2; i<=n; i++) r[sa[i]]=r[sa[i-1]]+(str[sa[i]]!=str[sa[i-1]]);
for(int l=1; r[sa[n]]<n; l<<=1)
{
memset(u,0,sizeof u);
memset(v,0,sizeof v);
memcpy(o,r,sizeof r);
for(int i=1; i<=n; i++) u[r[i]]++, v[r[i+l]]++;
for(int i=1; i<=n; i++) u[i]+=u[i-1], v[i]+=v[i-1];
for(int i=n; i>=1; i--) y[v[r[i+l]]--]=i;
for(int i=n; i>=1; i--) sa[u[r[y[i]]]--]=y[i];
r[sa[1]]=1;
for(int i=2; i<=n; i++) r[sa[i]]=r[sa[i-1]]+((o[sa[i]]!=o[sa[i-1]])||(o[sa[i]+l]!=o[sa[i-1]+l]));
}
{
int i,j,k=0;
for(int i=1; i<=n; h[r[i++]]=k)
for(k?k--:0,j=sa[r[i]-1]; str[i+k]==str[j+k]; k++);
}
ans=(long long)n*(long long)(n+1)/(long long)2;
for(int i=1; i<=n; i++) ans-=(long long)h[i];
return ans;
}
} sa1,sa2,sa3;
char s1[1000005],s2[1000005];
int l1,l2;
signed main()
{
scanf("%s",s1+1);
scanf("%s",s2+1);
l1=strlen(s1+1);
l2=strlen(s2+1);
memcpy(sa1.str,s1,sizeof s1);
memcpy(sa2.str,s2,sizeof s2);
for(int i=1; i<=l1; i++) sa3.str[i]=s1[i];
sa3.str[l1+1]='$';
for(int i=1; i<=l2; i++) sa3.str[i+l1+1]=s2[i];
cout<<2ll*(sa3.cal()-(l1+1)*(l2+1))-sa1.cal()-sa2.cal()<<endl;
}