一个植物 ((x,y)) 与((0,0))上的连线共有 (gcd(x,y))个点,再减去两个端点,
能量损失即为(2 imes(gcd(x,y)-2)+1 = 2 imes gcd(x,y)+1)
所以题目要求的即:
(sumlimits_{i=1}^nsumlimits_{j=1}^m(2 imes gcd(i,j)-1))
(=2 imessumlimits_{i=1}^nsumlimits_{j=1}^mgcd(i,j) - n imes m)
设(f=sumlimits_{i=1}^nsumlimits_{j=1}^mgcd(i,j))
(=sumlimits_{d=1}^ndsumlimits_{i=1}^nsumlimits_{j=1}^m[gcd(i,j)=d])
(=sumlimits_{d=1}^ndsumlimits_{i=1}^{frac{n}{d}}sumlimits_{j=1}^frac{m}{d}sumlimits_{k|i,k|j}mu(k))
(=sumlimits_{d=1}^ndsumlimits_{k=1}^frac{n}{d}mu(k)dfrac{n}{kd} imesdfrac{m}{kd})
设 (T = kd)
(=sumlimits_{T=1}^ndfrac{n}{T} imesdfrac{m}{T}sumlimits_{k|T}mu(k) imesdfrac{T}{k})
根据(id imesmu=varphi)
(=sumlimits_{T=1}^ndfrac{n}{T} imesdfrac{m}{T} imesvarphi(T))
原式即(=2 imessumlimits_{T=1}^nlfloordfrac{n}{T} floor imeslfloordfrac{m}{T} floor imesvarphi(T) - n imes m)
时间复杂度(O(n))
code
#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#define MogeKo qwq
using namespace std;
const int maxn = 1e5+10;
const int N = 1e5;
int phi[maxn],prime[maxn],cnt;
long long n,m,sum[maxn];
bool vis[maxn];
void Phi() {
sum[1] = phi[1] = 1;
for(int i = 2; i <= N; i++) {
if(!vis[i]) {
phi[i] = i-1;
prime[++cnt] = i;
}
for(int j = 1; j <= cnt && i*prime[j] <= N; j++) {
vis[i*prime[j]] = true;
if(i % prime[j])
phi[i*prime[j]] = phi[i] * (prime[j]-1);
else {
phi[i*prime[j]] = phi[i] * prime[j];
break;
}
}
sum[i] = sum[i-1] + phi[i];
}
}
long long f(long long n,long long m) {
long long ans = 0;
if(n > m) swap(n,m);
for(int i = 1,r; i <= n; i = r+1) {
r = min(n/(n/i),m/(m/i));
ans += (n/i)*(m/i)*(sum[r]-sum[i-1]);
}
return 2 * ans - n*m;
}
int main() {
scanf("%lld%lld",&n,&m);
Phi();
printf("%lld",f(n,m));
return 0;
}