我记得这题我去年写了树的做法,而且好像是用链前存的图xp总之还得了些分
树的部分,贪心+dfs即可。
基环树的部分,n^2暴力枚举断哪一条边...可以到88‘
加上快读,去掉vector...总之我乱搞优化到了96'
吸氧过了...
正解似乎应该用tarjan判环,据说是nlogn
(等会去做下加强版...
代码如下
#include<cstdio> #include<iostream> #include<cmath> #include<cstring> #define MogeKo qwq #include<algorithm> #include<vector> using namespace std; const int maxn = 5005; int n,m,x,y,k; int a[maxn],b[maxn],tx[maxn],ty[maxn]; bool vis[maxn]; vector <int> v[maxn]; int read() { int x = 0,f = 1; char ch = getchar(); while(ch < '0' || ch > '9') { if(ch == '-') f = -1; ch = getchar(); } while('0' <= ch && ch <= '9') { x = x*10 + ch-'0'; ch = getchar(); } return x*f; } void dfs(int u,int fa,int x,int y) { b[++k] = u; if(vis[u]) return; vis[u] = true; for(int i = 0; i < v[u].size(); i++) { if(v[u][i] == fa) continue; if(u == x && v[u][i] == y) continue; if(u == y && v[u][i] == x) continue; dfs(v[u][i],u,x,y); } return; } void update() { for(int i = 1; i <= n; i++) { if(b[i] < a[i]) { for(int j = i; j <= n; j++) a[j] = b[j]; break; } if(b[i] > a[i]) break; } return; } int main() { n = read(),m = read(); for(int i = 1; i <= m; i++) { x = read(),y = read(); v[x].push_back(y); v[y].push_back(x); tx[i] = x, ty[i] = y; } for(int i = 1; i <= n; i++) sort(v[i].begin(),v[i].end()); a[1] = n; if(m == n-1) dfs(1,0,0,0), update(); else for(int i = 1; i <= m; i++) { k = 0; memset(vis,0,sizeof(vis)); dfs(1,0,tx[i],ty[i]); if(k < n) continue; update(); } for(int i = 1; i <= n; i++) printf("%d ",a[i]); return 0; }