• N维偏序:cdq分治


    cdq(陈丹琦)分治,是一种类似二分的算法。基本思想同分治:

    1. 递归,把大问题划分成若干个结构相同的子问题,直到(L==R);
    2. 处理左区间[L,mid]对右区间[mid+1,R]的影响;
    3. 合并。

    它可以顶替复杂的高级数据结构,但必须离线操作。

    N维偏序,就是求N个关键字下的顺/逆序对。cdq分治是这类题中常用的降维手段。

     

    一维偏序

      学习归并排序时,我们了解到它的一个特性就是可以用来求逆序对。

      Luogu P1908 逆序对

    void merge(int L,int R) {
        if(L == R)return;
        int mid = (L+R)/2;
        merge(L,mid);
        merge(mid+1,R);
        int idx = L;
        int i = L,j = mid+1;
        while(i <= mid&&j <= R) {
            if(a[i] <= a[j])temp[idx++] = a[i++];
            else {
                temp[idx++] = a[j++];
                cnt += mid-i+1;
            }
        }
        while(i <= mid)temp[idx++] = a[i++];
        while(j <= R)temp[idx++] = a[j++];
        for(int i = L; i <= R; i++)
            a[i] = temp[i];
    }
      归并排序求逆序对  

    考虑它的原理:只统计对于右面的每一个元素,左边比它大的。

    两边的数列都为有序,且各自的逆序对都已经统计完了。

    那么对于右边的第j个元素(j>=mid+1),如果左边的第i个元素比j大,那么i+1,i+2....到mid一定都比j大。

    这里就体现了cdq分治的思想,也是多维偏序的基础。可以说,归并排序求逆序对是cdq分治的一个特例。

    二维偏序

      除了归并排序,一维偏序也可以用树状数组解决。实际上,一部分树状数组能解决的问题,cdq分治也可以解决。

      Luogu P3374 【模板】树状数组 1

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #define MogeKo qwq
    using namespace std;
    const int maxn = 500005;
    int n,m,opt,x,y,sum[maxn];
    
    int lowbit(int x){
        return x & -x;
    }
    
    void update(int x,int k){
        while(x <= n){
            sum[x] += k;
            x += lowbit(x);
        }
    }
    
    int query(int x){
        int ans = 0;
        while(x){
            ans += sum[x];
            x -= lowbit(x);
        }
        return ans;
    }
    
    int main(){
        scanf("%d%d",&n,&m);
        for(int i = 1;i <= n;i++){
            scanf("%d",&y);
            update(i,y);
        }
        for(int i = 1;i <= m;i++){
            scanf("%d%d%d",&opt,&x,&y);
            if(opt == 1)update(x,y);
            if(opt == 2)printf("%d
    ",query(y)-query(x-1));
        }
        return 0;
    }
      树状数组  

    树状数组板子题,可以轻松解决。

    把它转化为二维偏序问题,对于每个修改和询问,都有(时间,位置)两个维度。

    开一个结构体q[],数组下标记录时间,q[].id记录位置,q[].type记录类型(修改或询问)。注意,当修改和询问在同一位置时,修改操作要优先。

    解决二维偏序问题首先需要控制一维有序,另一维进行归并排序。在这里,时间默认就是有序的(++cnt);

    对于每个修改操作,记录修改的元素位置。数组赋初值的方式和修改操作相同,可以当做时间在最前的修改。

    查询怎么办?用树状数组求一段区间和时,需要用到前缀和,即 R-(L-1)。

    那么,询问的位置也可以拆分成两个:(L-1)和 R。用不同的type来区分它们:( L-1的要减去,R的要加上)。

    如何进行归并排序?对于一段位置有序的区间,一定是时间在前的修改操作会影响时间在后的查询操作。

    用sum维护区间内修改操作的值,修改时用sum+修改值;

    ans记录询问的答案,ans -所有(L-1)的sum +所有R的sum 即为这个询问的结果。为啥非要用cdq分治啊麻烦死了QAQ!!!

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #define MogeKo qwq
    using namespace std;
    const int maxn = 500005*3;
    
    int n,m,cnt,cqry,opt,x,y,ans[maxn];
    struct node{
        int type,id,val;
        bool operator < (const node & x) const{
            if(id != x.id)return id < x.id;
            else return type < x.type;
        }
    }q[maxn],tem[maxn];
    
    void cdq(int L,int R){
        if(L == R) return;
        int mid = L+R>>1;
        cdq(L,mid),cdq(mid+1,R);
        int t1 = L,t2 = mid+1;
        int sum = 0;
        for(int i = L;i <= R;i++){
            if( (t1 <= mid && q[t1]<q[t2]) || t2 > R){
                if(q[t1].type == 1) sum += q[t1].val;
                tem[i] = q[t1++];
            }
            else{
                if(q[t2].type == 2) ans[q[t2].val] -= sum;
                if(q[t2].type == 3) ans[q[t2].val] += sum;
                tem[i] = q[t2++];
            }
        }
        for(int i = L;i <= R;i++) q[i] = tem[i];
    }
    
    int main(){
        scanf("%d%d",&n,&m);
        for(int i = 1;i <= n;i++){
            cnt++;
            scanf("%d",&y);
            q[cnt].type = 1;
            q[cnt].id = i;
            q[cnt].val = y;
        }
        for(int i = 1;i <= m;i++){
            scanf("%d%d%d",&opt,&x,&y);
            if(opt == 1){
                q[++cnt].type = 1;
                q[cnt].id = x;
                q[cnt].val = y;
            }
            if(opt == 2){
                cqry++;
                q[++cnt].type = 2;
                q[cnt].id = x-1;
                q[cnt].val = cqry;
                q[++cnt].type = 3;
                q[cnt].id = y;
                q[cnt].val = cqry;
            }
        }
        cdq(1,cnt);
        for(int i = 1;i <= cqry;i++)
            printf("%d
    ",ans[i]);
        return 0;
    }
      二维偏序  

    三维偏序

      Luogu P3810 【模板】三维偏序(陌上花开)

    扩展到三维。设三维分别为x,y,z

    先按x排序,消除第一维的影响。

    考虑不使用cdq,用一个树状数组维护第二维,另一个树状数组维护第三维...就会出现树套树的神奇情况

    模仿之前的做法,第二维使用cdq分治,按y进行归并排序。虽然x的顺序被打乱了,但左一半一定小于右一半。第二维的影响被消除了。

    第三维可以用一个权值树状数组维护。

    int t1=L, t2=mid+1;
        while(t2 <= R){
            while(t1 <= mid && b[t1].y <= b[t2].y){
                tree.update(b[t1].z,b[t1].num);
                t1++;
            }
            b[t2].ans += tree.query(b[t2].z);
            t2++;
        }

    已经控制x2>x1,将所有y1<y2时按z1把当前花的个数加入树状数组,再查询比z2小的在树状数组中有多少个。

    由于归并排序时,y2后的y3一定大于y1,所以已经加入的z的个数不用清空。

    当归并的操作结束时,再把树状数组减去已经加入的左区间的z的个数(也就是左区间指针t1之前)。

    提供的数据中,可能有xyz完全相同的情况,所以初始化时要先去重,但不能直接调用unique函数。统计相同的花的个数,用结构体的.num记录。

    这样当把花按x加入树状数组时,加入.num中的个数就可以了。

    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #define MogeKo qwq
    using namespace std;
    const int maxn = 500005;
    int n,m,k,cnt[maxn];
    
    struct node{
        int x,y,z,num,ans;
        bool operator < (const node & A) const {
            return x<A.x || (x==A.x && (y<A.y || (y==A.y && z<A.z)));
        }
        bool operator == (const node & A) const {
            return x==A.x && y==A.y && z==A.z;
        }
    }a[maxn],b[maxn];
    
    bool cmpyz(node A,node B){
        return A.y<B.y || (A.y==B.y && A.z<B.z);
    }
    
    struct BIT{
        int sum[maxn],len;
        int lowbit(int x){
            return x & -x;
        }
        void update(int x,int k){
              for(int i = x; i<=len; i+=lowbit(i))
                sum[i] += k;
        }
        int query(int x){
            int ans = 0;
            for(int i = x; i; i-=lowbit(i))
                ans += sum[i];
            return ans;
        }
    }tree;
    
    void cdq(int L,int R){
        if(L == R)return;
        int mid = L+R>>1;
        cdq(L,mid),cdq(mid+1,R);
        sort(b+L,b+mid+1,cmpyz);
        sort(b+mid+1,b+R+1,cmpyz);
        int t1=L, t2=mid+1;
        while(t2 <= R){
            while(t1 <= mid && b[t1].y <= b[t2].y){
                tree.update(b[t1].z,b[t1].num);
                t1++;
            }
            b[t2].ans += tree.query(b[t2].z);
            t2++;
        }
        for(int i = L;i <= t1-1;i++)
            tree.update(b[i].z,-b[i].num);
    }
    
    int main(){
        scanf("%d%d",&n,&k);
        tree.len = k;
        for(int i = 1;i <= n;i++)
            scanf("%d%d%d",&a[i].x,&a[i].y,&a[i].z);
        sort(a+1,a+n+1);
        int bcnt = 0;
        for(int i = 1;i <= n;i++){
            bcnt++;
            if(a[i]==a[i+1])continue;
            b[++m] = a[i], b[m].num = bcnt;
            bcnt = 0;
        }
        cdq(1,m);
        for(int i = 1;i <= m;i++)
            cnt[b[i].ans+b[i].num-1] += b[i].num;
        for(int i = 0;i <= n-1;i++)
            printf("%d
    ",cnt[i]);
        return 0;
    }
      三维偏序  

    其实cdq分治我也不是很明白qwq

    理论上,cdq分治可以解决任意N维偏序问题。但是,cdq套cdq的复杂度会达到n logkn,当它超过n2的时候...还是选择暴力枚举吧w

  • 相关阅读:
    html固定宽度下拉框内容显示不全问题解决方法
    ORA-00918: column ambiguously defined
    LigerUI可编辑表格左下角出现白色小方块遮罩层问题解决办法
    Lombok简化Java代码的好工具
    PLSQL Developer连接不上64位Oracle 10g的解决办法
    Windows 2008安装Oracle10g提示操作系统版本检查未通过
    Windows2008安装WebSphere 6.1提示此安装程序不能在图形方式中运行
    LigerUI树节点选中之后节点背景太短
    javapms部署之后首页不能正常显示问题
    Oracle触发器给表自身的字段重新赋值出现ORA-04091异常
  • 原文地址:https://www.cnblogs.com/mogeko/p/10439209.html
Copyright © 2020-2023  润新知