1.链接地址:
http://poj.org/problem?id=1316
http://bailian.openjudge.cn/practice/1316
2.题目:
- 总时间限制:
- 1000ms
- 内存限制:
- 65536kB
- 描述
- In 1949 the Indian mathematician D.R. Kaprekar discovered a class of numbers called self-numbers. For any positive integer n, define d(n) to be n plus the sum of the digits of n. (The d stands for digitadition, a term coined by Kaprekar.) For example, d(75) = 75 + 7 + 5 = 87. Given any positive integer n as a starting point, you can construct the infinite increasing sequence of integers n, d(n), d(d(n)), d(d(d(n))), .... For example, if you start with 33, the next number is 33 + 3 + 3 = 39, the next is 39 + 3 + 9 = 51, the next is 51 + 5 + 1 = 57, and so you generate the sequence
33, 39, 51, 57, 69, 84, 96, 111, 114, 120, 123, 129, 141, ...
The number n is called a generator of d(n). In the sequence above, 33 is a generator of 39, 39 is a generator of 51, 51 is a generator of 57, and so on. Some numbers have more than one generator: for example, 101 has two generators, 91 and 100. A number with no generators is a self-number. There are thirteen self-numbers less than 100: 1, 3, 5, 7, 9, 20, 31, 42, 53, 64, 75, 86, and 97.- 输入
- No input for this problem.
- 输出
- Write a program to output all positive self-numbers less than 10000 in increasing order, one per line.
- 样例输入
- 样例输出
1 3 5 7 9 20 31 42 53 64 | | <-- a lot more numbers | 9903 9914 9925 9927 9938 9949 9960 9971 9982 9993- 来源
- Mid-Central USA 1998
3.思路:
4.代码:
1 //2010-04-28 2 //v0.1 create by wuzhihui 3 #include<iostream> 4 using namespace std; 5 #define max 10000 6 int a[max+2]={0}; 7 8 int main() 9 { 10 int b,c; 11 int i; 12 //memset(a,1,sizeof(a)); 13 for(i=1;i<=max;i++) 14 { 15 b=c=i; 16 do 17 { 18 b+=(c%10); 19 c=c/10; 20 }while(c!=0); 21 if(b<=max) a[b]=1; 22 } 23 for(i=1;i<=max;i++) 24 { 25 if(a[i]==0) cout<<i<<endl; 26 } 27 //system("pause"); 28 return 1; 29 }