1、使用*号来展开序列,*是序列展开,每个元素都当做一个参数。
ls = (1, 2, 3);
foo(ls),这样foo只有一个参数,就是ls这个列表本身
foo(*ls), foo得到3个参数,分别为1 2 3,等价于foo(1,2,3)
2、python 读写文件中 w与wt ; r与rt 有何区别?
't' 表示‘text mode’, 相对应的是"binary mode'
就是说你是以文本模式打开,还是二进制模式打开。因为默认就是文本模式,所以'rt' 等价于'r'
3、int64与int的区别?
1)int是python的基本类型,而int64是numpy中引入的一个类,即 numpy.int64 ;
2)使用numpy模块中的numpy.sum()方法得到的结果是int64,而使用默认的sum()得到结果的int类型;
下面代码中,虽然执行结果a和b的数值都是6,但是类型不同
1 import numpy as np 2 # a 的类型是int64 3 a = np.sum([1,2,3]) 4 # b 的类型是int 5 b = sum([1,2,3])
3)int64不会报除0的错误(事实上numpy中的其他类型也不会报错,比如float64等);而int会报除0错误(其他基本类型也会,比如float等)
测试如下:表明numpy 的数据类型(int64、float64等)比python的基本类型(int、float等)功能强大,计算能力更强,可以有nan、inf等结果
1 import numpy as np 2 #-------- int 例子 ------------- 3 # 也可以写int(1),也可不写,因为默认是int类型 4 a = 1 5 b = 0 6 c = 0 7 8 #下面都会报 int 不能除0错误 9 r1 = a / b 10 r2 = b / c 11 #下面都会报 float 不能除0错误 12 r3 = a *1.0 / b 13 r4 = b *1.0 / c 14 15 #--------- int64 例子 ----------- 16 17 a = np.int64(1) 18 b = np.int64(0) 19 c = np.int64(0) 20 21 #下面语句不会除0报错,会提示,但不报错和中断 22 # 运行结果: r1 = 0 , r2 = 0 23 r1 = a / b 24 r2 = b / c 25 26 #运行结果: r3 = inf ,r4 = nan 27 #inf 表示无穷大,nan表示not a number ,不是数字 28 r3 = a *1.0 / b 29 r4 = b *1.0 / c
4、type()函数可用于返回某个数据的数据类型;
1 a = 1 2 type(a)
5、& 跟 and 的区别?
& 是位运算;and 是逻辑运算。
>>> a = 1 >>> b = 2 >>> #1 的二进制是 01,2的二进制是 10 >>> a&b 0 >>> a and b 2
&虽然是位运算,但是如果操作数是0或1的话,也类似于逻辑运算;
>>> a=1 >>> b=1 >>> c=0 >>> a & b 1 >>> a & c 0
6、Lambda 表达式有何用处?如何使用?
【引言】这是python支持一种有趣的语法,它允许你快速定义单行的最小函数(请记住它本质就是个函数),类似C语言中的宏,可以用在任何需要函数的地方,示例如下:
>>> g = lambda x: x * 2
>>> g(3)
6
>>> (lambda x: x * 2)(3)
6
我们也可以把filter map reduce 和lambda结合起来用,函数就可以简单的写成一行。例如
>>>kmpathes = filter(lambda kmpath: kmpath, map(lambda kmpath: string.strip(kmpath), string.split(l, ':')))
看起来麻烦,其实就像用语言来描述问题一样,非常优雅。
对 l 中的所有元素以':'做分割,得出一个列表。对这个列表的每一个元素做字符串strip,形成一个列表。对这个列表的每一个元素做直接返回操作(这个地方可以加上过滤条件限制),最终获得一个字符串被':'分割的列表,列表中的每一个字符串都做了strip,并可以对特殊字符串过滤。
商业转载请联系作者获得授权,非商业转载请注明出处。
作者:涛吴
链接:http://www.zhihu.com/question/20125256/answer/14058285
来源:知乎
不谈形式化的 λ 演算,只说有实际用途的匿名函数。先举一个普通的 Python 例子:将一个 list 里的每个元素都平方:
map( lambda x: x*x, [y for y in range(10)] )
def sq(x):
return x * x
map(sq, [y for y in range(10)])
进一步讲,匿名函数本质上就是一个函数,它所抽象出来的东西是一组运算。这是什么意思呢?类比
a = [1, 2, 3]
f = lambda x : x + 1
现在回头来看 map() 函数,它可以将一个函数映射到一个可枚举类型上面。沿用上面给出的 a 和 f,可以写:
map(f, a)
map( lambda x : x + 1, [1, 2, 3] )
a = [1, 2, 3]
r = []
for each in a:
r.append(each+1)
和其他很多语言相比,Python 的 lambda 限制多多,最严重的当属它只能由一条表达式组成。这个限制主要是为了防止滥用,因为当人们发觉 lambda 很方便,就比较容易滥用,可是用多了会让程序看起来不那么清晰,毕竟每个人对于抽象层级的忍耐 / 理解程度都有所不同。
首先注意这些函数不只是跟lambda表达式搭配,还可以跟def定义的函数搭配,如下:
filter
filter(function, sequence):
对sequence中的item依次执行function(item),将执行结果为True的item组成一个List/String/Tuple(取决于sequence类型)返回,示例如下:
>>> def f(x): return x % 2 != 0 and x % 3 != 0
>>> filter(f, range(2, 25))
[5, 7, 11, 13, 17, 19, 23]
>>> def f(x): return x != 'a'
>>> filter(f, "abcdef")
'bcdef'
map
map(function, sequence):
对sequence中的item依次执行function(item),将执行结果组成一个List返回
另外map也支持多个sequence,当然这也要求function支持相应数量的参数输入,示例如下:
>>> def cube(x): return x*x*x
>>> map(cube, range(1, 11))
[1, 8, 27, 64, 125, 216, 343, 512, 729, 1000]
>>> def cube(x) : return x + x
>>> def add(x, y): return x+y
>>> map(add, range(8), range(8))
[0, 2, 4, 6, 8, 10, 12, 14]
reduce(归纳)
reduce(function,sequence,starting_value):
对sequence中的item顺序迭代调用function,如果有starting_value,还可以作为初始值调用,例如可以用来对List求和,示例如下:
>>> def add(x,y): return x + y
>>> reduce(add, range(1, 11))
(注:1+2+3+4+5+6+7+8+9+10)
>>> reduce(add, range(1, 11), 20)
(注:1+2+3+4+5+6+7+8+9+10+20)
sorted:对sequence进行排序,直接看例子
>>>
s = [('a', 3), ('b', 2), ('c', 1)]>>>
sorted(s, key=lambda x:x[1])
s = [('a', 3), ('b', 2), ('c', 1)]
>>> l = ['foo', 'bar', 'far']
>>> map(lambda x: x.upper(), l)
['FOO', 'BAR', 'FAR']
>>> filter(lambda x: 'f' in x, l)
['foo', 'far']
>>> map(lambda x: x.upper(), filter(lambda x: 'f' in x, l))
['FOO', 'FAR']
>>> reduce(lambda a, b: a * b, xrange(1, 5)) # 计算 1*2*3*4 = 24
24
7、字典的排序:(使用lambda)
python 字典(dict)的特点就是无序的,按照键(key)来提取相应值(value),如果我们需要字典按值排序的话,那可以用下面的方法来进行:
1)下面的是按照value的值从大到小的顺序来排序。
dic = {'a':31, 'bc':5, 'c':3, 'asd':4, 'aa':74, 'd':0}
dict= sorted(dic.iteritems(), key=lambda d:d[1], reverse = True)
print dict
输出的结果:
[('aa', 74), ('a', 31), ('bc', 5), ('asd', 4), ('c', 3), ('d', 0)]
下面我们分解下代码
print dic.iteritems() 得到[(键,值)]的列表。
然后用sorted方法,通过key这个参数,指定排序是按照value,也就是第一个元素d[1的值来排序。reverse = True表示是需要翻转的,默认是从小到大,翻转的话,那就是从大到小。
2)对字典按键(key)排序:
dic = {'a':31, 'bc':5, 'c':3, 'asd':4, 'aa':74, 'd':0}
dict= sorted(dic.iteritems(), key=lambda d:d[0]) d[0]表示字典的键
print dict
8、Python文件夹与文件的操作
参考:【python文件夹与文件的操作】
作用:创建一个目录,可以是相对或者绝对路径,mode的默认模式是0777。
如果目录有多级,则创建最后一级。如果最后一级目录的上级目录有不存在的,则会抛出一个OSError。
makedirs( path [,mode] )
作用: 创建递归的目录树,可以是相对或者绝对路径,mode的默认模式也是0777。
如果子目录创建失败或者已经存在,会抛出一个OSError的异常,Windows上Error 183即为目录已经存在的异常错误。如果path只有一级,与mkdir一样。例如: