Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:
- Integers in each row are sorted in ascending from left to right.
- Integers in each column are sorted in ascending from top to bottom.
For example,
Consider the following matrix:
[ [1, 4, 7, 11, 15], [2, 5, 8, 12, 19], [3, 6, 9, 16, 22], [10, 13, 14, 17, 24], [18, 21, 23, 26, 30] ]
Given target = 5
, return true
.
Given target = 20
, return false
.
解法一:暴力解法,遍历二维数组。
代码如下:
public class Solution { public boolean searchMatrix(int[][] matrix, int target) { int rows=matrix.length; int columns=matrix[0].length; for(int i=0;i<rows;i++) for(int j=0;j<columns;j++){ if(target==matrix[i][j]) return true; } return false; } }
运行结果:时间复杂度为O(M*N)
方法二:根据矩阵的特点,从右上角元素开始比较,target小,则列数减1,target大,则行数加1.
代码如下:
public class Solution { public boolean searchMatrix(int[][] matrix, int target) { if(matrix==null ||matrix.length<1 || matrix[0].length<1){ return false; } int col=matrix[0].length-1; int row=0; while(col>=0 && row<=matrix.length-1){ if(target==matrix[row][col]){ return true; }else if(target<matrix[row][col]){ col--; }else if(target>matrix[row][col]){ row++; } } return false; } }
运行结果:时间复杂度O(M+N)