• 【题解】Willem, Chtholly and Seniorious Codeforces 896C ODT


    Prelude

    ODT这个东西真是太好用了,以后写暴力骗分可以用,写在这里mark一下。
    题目链接:ヽ(✿゚▽゚)ノ


    Solution

    先把原题解贴在这里:(ノ*・ω・)ノ
    简单地说,因为数据是全部随机的,所以一定会有特别多的区间set,就会有很多数字相同,那么我们暴力把相同的数字合并成一个点,合并完之后数组就变得很短,然后对于询问暴力做就可以了。
    具体复杂度是什么我也不会证明qwq,所以就把由乃的题解贴上来了qwq,感觉很靠谱的样子。
    题解中给的是用STL的set维护缩点后的数组,我感觉不是很好写,就直接用数组维护了。
    ddd还写过链表维护的,不过感觉都差不多,反正复杂度都是对的,肯定能过qwq。


    Code

    #include <bits/stdc++.h>
    #define dprint printf
    
    using namespace std;
    typedef long long ll;
    typedef pair<ll,int> pli;
    const int MAXN = 100010;
    int _w;
    
    void noprint(...) {}
    
    int fpow( int a, int b, int mod ) {
    	int c = 1;
    	while(b) {
    		if( b & 1 ) c = int(1LL * c * a % mod);
    		a = int(1LL * a * a % mod);
    		b >>= 1;
    	}
    	return c;
    }
    
    int inter( int l1, int r1, int l2, int r2 ) {
    	int l = max(l1, l2);
    	int r = min(r1, r2);
    	return max(r-l+1, 0);
    }
    
    int n, m, seed, vmax;
    ll a[MAXN];
    
    int rnd() {
    	const int MOD = 1e9+7;
    	
    	int ret = seed;
    	seed = int((1LL * seed * 7 + 13) % MOD);
    	return ret;
    }
    
    pli b[MAXN];
    int sz;
    void prelude() {
    	sz = 1;
    	b[sz-1].first = a[1], b[sz-1].second = 0;
    	for( int i = 1; i <= n; ++i ) {
    		if( b[sz-1].first == a[i] ) {
    			++b[sz-1].second;
    		} else {
    			b[sz].first = a[i], b[sz].second = 1, ++sz;
    		}
    	}
    }
    
    pli c[MAXN];
    int csz;
    
    void append( ll x, int cnt ) {
    	if( csz && c[csz-1].first == x )
    		c[csz-1].second += cnt;
    	else
    		c[csz].first = x, c[csz].second = cnt, ++csz;
    }
    
    void solve1( int l, int r, int x ) {
    	int L = 0, R = 0;
    	csz = 0;
    	for( int i = 0; i < sz; ++i ) {
    		L = R+1;
    		R = L + b[i].second - 1;
    		ll num = b[i].first;
    		int cntl = inter(L, l-1, L, R);
    		int cnt = inter(L, R, l, r);
    		int cntr = inter(r+1, R, L, R);
    		if( cntl ) append(num, cntl);
    		if( cnt ) append(num+x, cnt);
    		if( cntr ) append(num, cntr);
    	}
    	sz = csz;
    	for( int i = 0; i < sz; ++i )
    		b[i] = c[i];
    }
    
    void solve2( int l, int r, int x ) {
    	int L = 0, R = 0;
    	csz = 0;
    	for( int i = 0; i < sz; ++i ) {
    		L = R+1;
    		R = L + b[i].second - 1;
    		ll num = b[i].first;
    		int cntl = inter(L, l-1, L, R);
    		int cnt = inter(L, R, l, r);
    		int cntr = inter(r+1, R, L, R);
    		if( cntl ) append(num, cntl);
    		if( cnt ) append(x, cnt);
    		if( cntr ) append(num, cntr);
    	}
    	sz = csz;
    	for( int i = 0; i < sz; ++i )
    		b[i] = c[i];
    }
    
    void solve3( int l, int r, int x ) {
    	int L = 0, R = 0;
    	csz = 0;
    	for( int i = 0; i < sz; ++i ) {
    		L = R+1;
    		R = L + b[i].second - 1;
    		int cnt = inter(L, R, l, r);
    		if( cnt ) c[csz++] = pli( b[i].first, cnt );
    	}
    	sort(c, c+csz);
    	L = R = 0;
    	for( int i = 0; i < csz; ++i ) {
    		L = R+1;
    		R = L + c[i].second - 1;
    		if( x >= L && x <= R )
    			return (void)printf( "%lld
    ", c[i].first );
    	}
    	return assert(0);
    }
    
    void solve4( int l, int r, int x, int y ) {
    	int L = 0, R = 0, ans = 0;
    	for( int i = 0; i < sz; ++i ) {
    		L = R+1;
    		R = L + b[i].second - 1;
    		int cnt = inter(L, R, l, r);
    		if( cnt ) ans = int((ans + 1LL * cnt * fpow( int(b[i].first % y), x, y )) % y);
    	}
    	printf( "%d
    ", ans );
    }
    
    void output_array() {
    	for( int i = 0; i < sz; ++i ) {
    		int t = b[i].second;
    		while( t-- )
    			dprint( "%lld ", b[i].first );
    	}
    	dprint("
    ");
    }
    
    int main() {
    	_w = scanf( "%d%d%d%d", &n, &m, &seed, &vmax );
    	// dprint("Init:
    ");
    	for( int i = 1; i <= n; ++i ) {
    		a[i] = rnd() % vmax + 1;
    		// dprint("%lld ", a[i]);
    	}
    	// dprint("
    ");
    	prelude();
    	for( int i = 1; i <= m; ++i ) {
    		int op, l, r, x, y;
    		op = rnd() % 4 + 1;
    		l = rnd() % n + 1;
    		r = rnd() % n + 1;
    		if( l > r ) swap(l, r);
    		if( op == 3 )
    			x = rnd() % (r-l+1) + 1;
    		else
    			x = rnd() % vmax + 1;
    		if( op == 4 )
    			y = rnd() % vmax + 1;
    		if( op == 1 ) solve1(l, r, x);
    		else if( op == 2 ) solve2(l, r, x);
    		else if( op == 3 ) solve3(l, r, x);
    		else if( op == 4 ) solve4(l, r, x, y);
    		// dprint("op = %d, l = %d, r = %d, x = %d, y = %d
    ", op, l, r, x, y);
    		// output_array();
    	}
    	return 0;
    }
    
  • 相关阅读:
    [华为]字符串反转
    [华为]字符个数统计
    [华为]字符串分隔
    [华为]计算字符个数
    [华为]字符串最后一个单词的长度
    感悟-思考-生活
    [百度校招]打印全排列
    [阿里]逆序打印整数,要求递归实现
    [百度]数组中去掉连续重复的数字,只保留1个
    百度NLP三面
  • 原文地址:https://www.cnblogs.com/mlystdcall/p/8026700.html
Copyright © 2020-2023  润新知