• poj2955:Brackets


    Brackets

    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 8716   Accepted: 4660

    Description

    We give the following inductive definition of a “regular brackets” sequence:

    • the empty sequence is a regular brackets sequence,
    • if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
    • if a and b are regular brackets sequences, then ab is a regular brackets sequence.
    • no other sequence is a regular brackets sequence

    For instance, all of the following character sequences are regular brackets sequences:

    (), [], (()), ()[], ()[()]

    while the following character sequences are not:

    (, ], )(, ([)], ([(]

    Given a brackets sequence of characters a1a2 … an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1i2, …, im where 1 ≤i1 < i2 < … < im ≤ nai1ai2 … aim is a regular brackets sequence.

    Given the initial sequence ([([]])], the longest regular brackets subsequence is [([])].

    Input

    The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters ()[, and ]; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.

    Output

    For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.

    Sample Input

    ((()))
    ()()()
    ([]])
    )[)(
    ([][][)
    end

    Sample Output

    6
    6
    4
    0
    6

    分析

    dp[l][r]表示区间[l,r]的答案。

    状态转移方程,详见代码

    • dp[i][j] = max(dp[i+1][j],dp[i][j-1]);
    • if ((s[i]=='('&&s[j]==')')||(s[i]=='['&&s[j]==']'))
        dp[i][j]=dp[i+1][j-1]+2;
    • dp[l][r]=max(dp[l][r],dp[l][k]+dp[k+1][r]);

    code

     1 #include<cstdio>
     2 #include<cstring>
     3 #include<algorithm>
     4 using namespace std;
     5 char s[110];
     6 int dp[110][110];
     7 
     8 int main()
     9 {
    10     while (scanf("%s",s)!=EOF)
    11     {
    12         memset(dp,0,sizeof(dp));
    13         if (s[0]=='e') break;
    14         int len = strlen(s);
    15         for (int i=len-2; i>=0; --i)
    16         {
    17             for (int j=i; j<len; ++j)
    18             {
    19                 dp[i][j] = max(dp[i+1][j],dp[i][j-1]);
    20                 if ((s[i]=='('&&s[j]==')')||(s[i]=='['&&s[j]==']'))
    21                     dp[i][j]=dp[i+1][j-1]+2;
    22                 for (int k=i; k<j; ++k) 
    23                     dp[i][j] = max(dp[i][j],dp[i][k]+dp[k+1][j]);
    24             }
    25         }
    26         printf("%d
    ",dp[0][len-1]);
    27     }
    28     return 0;
    29 }
  • 相关阅读:
    linux中关于权限的一些事
    Linux上用IP转发使内部网络连接互联网
    Linux常用基础命令
    linux路径问题
    ansible简介
    linux
    linux常用命令
    ls 命令详解
    Linux 实验 [Day 01]
    Linux SPI通过设备树文件添加设备
  • 原文地址:https://www.cnblogs.com/mjtcn/p/7354687.html
Copyright © 2020-2023  润新知