• P1156 垃圾陷阱


    P1156 垃圾陷阱

    题目描述

    卡门――农夫约翰极其珍视的一条Holsteins奶牛――已经落了到“垃圾井”中。“垃圾井”是农夫们扔垃圾的地方,它的深度为D(2<=D<=100)英尺。

    卡门想把垃圾堆起来,等到堆得与井同样高时,她就能逃出井外了。另外,卡门可以通过吃一些垃圾来维持自己的生命。

    每个垃圾都可以用来吃或堆放,并且堆放垃圾不用花费卡门的时间。

    假设卡门预先知道了每个垃圾扔下的时间t(0< t<=1000),以及每个垃圾堆放的高度h(1<=h<=25)和吃进该垃圾能维持生命的时间f(1<=f<=30),要求出卡门最早能逃出井外的时间,假设卡门当前体内有足够持续10小时的能量,如果卡门10小时内没有进食,卡门就将饿死。

    输入输出格式

    输入格式:

    第一行为2个整数,D 和 G (1 <= G <= 100),G为被投入井的垃圾的数量。

    第二到第G+1行每行包括3个整数:T (0 < T <= 1000),表示垃圾被投进井中的时间;F (1 <= F <= 30),表示该垃圾能维持卡门生命的时间;和 H (1 <= H <= 25),该垃圾能垫高的高度。

    输出格式:

    如果卡门可以爬出陷阱,输出一个整表示最早什么时候可以爬出;否则输出卡门最长可以存活多长时间。

    输入输出样例

    输入样例#1:
    20 4
    5 4 9
    9 3 2
    12 6 10
    13 1 1
    输出样例#1:
    13

    说明

    [样例说明]

    卡门堆放她收到的第一个垃圾:height=9;

    卡门吃掉她收到的第二个垃圾,使她的生命从10小时延伸到13小时;

    卡门堆放第3个垃圾,height=19;

    卡门堆放第4个垃圾,height=20。

    注释见代码

     1 #include<cstdio>
     2 #include<algorithm>
     3 #include<cstring>
     4 #define INF 1e8
     5 using namespace std;
     6 
     7 struct node{
     8     int t,hp,h;
     9     bool operator < (const node &x) const     //按出现的时间排序 
    10     {
    11         return t < x.t ;
    12     }
    13 }a[1010];
    14 int f[110][1010];    //i个垃圾,j高度时的最大生命
    15 int d,n,ans;
    16 
    17 int read()
    18 {
    19     int x=0,f=1;char ch=getchar();
    20     while (ch<'0'||ch>'9'){if (ch=='-')f=-1;ch=getchar();}
    21     while (ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    22     return x*f;
    23 }
    24 
    25 int main()
    26 {
    27     d = read();n = read();
    28     for (int i=1; i<=n; ++i)
    29     {
    30         a[i].t = read(); a[i].hp = read(); a[i].h = read();
    31     }
    32     sort(a+1,a+n+1);
    33     for (int i=0; i<=n; ++i)
    34         for (int j=0; j<=d; ++j)
    35             f[i][j] = -INF;         
    36     f[0][0] = 10;    //首先是10小时的能量 
    37     a[0].h = a[0].hp = a[0].t = 0;
    38     bool flag = false;
    39     for (int i=1; i<=n; ++i)
    40     {
    41         for (int j=0; j<=d; ++j)
    42         {
    43             if (f[i-1][j]-(a[i].t-a[i-1].t)>=0)        //吃掉 
    44             {
    45                 f[i][j] = max(f[i-1][j]-(a[i].t-a[i-1].t)+a[i].hp,f[i][j]);
    46             }
    47             if (j-a[i].h>=0 && f[i-1][j-a[i].h]-(a[i].t-a[i-1].t)>=0)    //堆上 
    48             {
    49                 f[i][j] = max(f[i-1][j-a[i].h]-(a[i].t-a[i-1].t),f[i][j]);
    50                 if (j==d)     //如果已经能够到达d高度,则输出 
    51                 {
    52                     printf("%d",a[i].t);    //在加上a[i].h时,达到了d,所以输出第i个垃圾出现的时间即可 
    53                     flag = true ;
    54                     return 0;
    55                 }
    56             }
    57         }
    58     }
    59     if (!flag) 
    60     {
    61         for (int i=0; i<=n; ++i)
    62             for (int j=0; j<=d; ++j)
    63                     ans = max(ans,f[i][j]+a[i].t);//f[i][j]是i时间j高度的最大生命,所以还要加上吃掉最后一个垃圾的时间 
    64         printf("%d",ans);
    65     }
    66     return 0;
    67 }
  • 相关阅读:
    第三次冲刺--软件工程
    【操作系统】实验四 主存空间的分配和回收
    《构造之法》8、9、10
    实验三 进程调度模拟程序--操作系统
    构建之法读后感
    操作系统作业调度-操作系统
    结对评论—软件工程
    复利计算6.0—软件工程(web版本)
    学习进度条
    第三次冲刺总结
  • 原文地址:https://www.cnblogs.com/mjtcn/p/7137527.html
Copyright © 2020-2023  润新知