• 二分搜索树


    #include <iostream>
    #include <vector> 
    #include <string>
    #include <queue> 
    #include <cassert>
     
    using namespace std;
    
    template<typename Key, typename Value>
    class BST {
    	
    	public :
    		BST() {
    			root = NULL;
    			count = 0;
    		}
    		~BST() {
    			// TODO : ~BST()
    			destroy(root);
    		}
    		
    		int size() {
    			return count;
    		} 
    		
    		bool isEmpty() {
    			return count == 0;
    		}
    		
    		// 插入结点 
    		void insert(Key key, Value value) {
    			root = insert(root, key, value);
    		}
    		
    		// 是否包含该键值的结点 
    		bool contain(Key key) {
    			return contain(root, key);
    		}
    		
    		// 返回值为指针类型: 若未查找到, 返回空
    		// 若查找到, 返回指向value地址的指针 
    		Value * search(Key key) {
    			return search(root, key);
    		}
    		
    		//前序遍历
    		void preOrder() {
    			preOrder(root);
    		} 
    		
    		// 中序遍历
    		void inOrder() {
    			inOrder(root);
    		} 
    		
    		// 后序遍历
    		void postOrder() {
    			postOrder(root);
    		} 
    		
    		// 层序遍历
    		void levelOrder() {
    			
    			queue<Node*> q;
    			q.push(root);
    			while(!q.empty()) {
    				
    				Node * node = q.front();
    				q.pop();
    				
    				cout << node->key << endl;
    				
    				if(node->left)
    					q.push(node->left);
    				if(node->right)
    					q.push(node->right);
    			}
    		} 
    		
    		// 寻找最小的键值
    		Key minimum() {
    			assert(count != 0);
    			Node * minNode = minimum(root);
    			return minNode->key;
    		} 
    		
    		// 寻找最大的键值
    		Key maximum() {
    			assert(count != 0);
    			Node * maxNode = maximum(root);
    			return maxNode->key; 
    		} 
    		
    		// 从二叉树中删除最小值所在节点
    		void removeMin() {
    			if(root)
    				root = removeMin(root);
    		} 
    		
    		// 从二叉树中删除最大值所在的结点
    		void removeMax() {
    			if(root)
    				root = removeMax(root);
    		} 
    		
    		// 从二叉树中删除键值为key的结点
    		void remove(Key key) {
    			root = remove(root, key);
    		} 
    		
    	private :
    		struct Node {
    			Key key;
    			Value value;
    			Node * left;
    			Node * right;
    			
    			Node(Key key, Value value) {
    				this->key = key;
    				this->value = value;
    				this->left = this->right = NULL;
    			}
    			
    			Node(Node *node) {
    				this->key = node->key;
    				this->value = node->value;
    				this->left = node->left;
    				this->right = node->right;
    			}
    		};
    		
    		Node * root;
    		int count;	// 二分搜索树的节点个数 
    		
    		Node * insert(Node * node, Key key, Value value) {
    			
    			if(node == NULL) {
    				count ++;
    				return new Node(key, value);
    			}
    			
    			if(key == node->key)
    				node->value = value;
    			else if(key < node->key)
    				node->left = insert(node->left, key, value);
    			else
    				node->right = insert(node->right, key, value);
    				
    			return node;
    		}
    		
    		bool contain(Node * node, Key key) {
    			
    			if(node == NULL)
    				return false;
    			
    			if(key == node->key)
    				return true;
    			else if(key < node->key)
    				return contain(node->left, key);
    			else
    				return contain(node->right, key);
    		}
    		
    		// 在以node为根的二叉搜索树中查找key所对应的value 
    		Value * search(Node * node, Key key) {
    			
    			if(node == NULL)
    				return NULL;
    			
    			if(key == node->key)
    				return &(node->value);
    			else if(key < node->key)
    				return search(node->left, key);
    			else
    				return search(node->right, key);
    		}
    		
    		void preOrder(Node * node) {
    			
    			if(node != NULL) {
    				cout << node->key << endl;
    				preOrder(node->left);
    				preOrder(node->right);
    			}
    			return ;
    		}
    		
    		void inOrder(Node * node) {
    			
    			if(node != NULL) {
    				inOrder(node->left);
    				cout << node->key << endl;
    				inOrder(node->right);
    			}
    			return ;
    		}
    		
    		void postOrder(Node * node) {
    			
    			if(node != NULL) {
    				postOrder(node->left);
    				postOrder(node->right);
    				cout << node->key << endl;
    			}
    			return ;
    		}
    		
    		void destroy(Node * node) {
    			
    			// 先删除左子树, 再删除右子树, 最后删除根节点 
    			if(node != NULL) {
    				destroy(node->left);
    				destroy(node->right);
    				
    				delete node;
    				count --;
    			}
    		}
    		
    		// 在以node为根的二叉搜索树中, 返回最小键值的结点 
    		Node * minimum(Node * node) {
    			if(node->left == NULL)
    				return node;
    			 
    			return minumum(node->left);
    		}
    		
    		// 在以node为根的二叉搜索树中, 返回最大键值的结点
    		Node maximum(Node * node) {
    			if(node->right == NULL)
    				return node;
    			
    			return maximum(node->right);
    		}
    		
    		// 删除以node为根的二分搜索树中的最小节点
    		// 返回删除结点后的新的二分搜索树的根
    		Node * removeMin(Node * node) {
    			
    			if(node->left == NULL) {
    				Node * rightNode = node->right;
    				delete node;
    				count --;
    				return rightNode;
    			}
    			
    			node->left = removeMin(node->left);
    			return node;
    		} 
    		
    		// 删除以node为根的二分搜索树中的最大节点
    		// 返回删除结点后的新的二分搜索树的根
    		Node * removeMax(Node * node) {
    			
    			if(node->right == NULL) {
    				Node * leftNode = node->left;
    				delete node;
    				count --;
    				return leftNode;
    			}
    			
    			node->right = removeMax(node->right);
    			return node;
    		}
    		
    		// 删除以node为根的二分搜索树中键值为key的结点
    		// 返回删除结点后的二分搜索树的根
    		Node * remove(Node * node, Key key) {
    			
    			if(node == NULL)
    				return NULL;
    			
    			if(key < node->key) {
    				node->left = remove(node->left, key);
    				return node;
    			}
    			else if(key > node->key) {
    				node->right = remove(node->right, key);
    				return node;
    			}
    			else {	// key == node->key
    				if(node->left == NULL) {
    					Node * rightNode = node->right;
    					delete node;
    					count --;
    					return rightNode;
    				}
    				if(node->right == NULL) {
    					Node * leftNode = node->left;
    					delete node;
    					count --;
    					return leftNode;
    				}
    				
    				// node->left != NULL && node->right != NULL
    				Node * successor = new Node(minimum(node->right));
    				count ++;
    				
    				successor->right = removeMin(node->right);
    				successor->left = node->left;
    				
    				delete node;
    				count --;
    				
    				return successor;
    			}
    		} 
    };
    

      

  • 相关阅读:
    在IE浏览器中url传参长度问题
    Linq语句的认识
    关于选择表达式以及判断语句的书写,可以让代码更加的清晰。
    C#/对线程的认识
    Js/如何修改easyui修饰的input的val值
    Java Lambda表达式中的this
    MySQL USING关键词/USING()函数的使用
    复杂SQL查询
    Java 修饰符
    Git:idea中将当前分支修改的内容提交到其他分支上
  • 原文地址:https://www.cnblogs.com/mjn1/p/10595733.html
Copyright © 2020-2023  润新知