• Codeforces Round #428 (Div. 2) C. dfs


    C. Journey
    time limit per test
    2 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    There are n cities and n - 1 roads in the Seven Kingdoms, each road connects two cities and we can reach any city from any other by the roads.

    Theon and Yara Greyjoy are on a horse in the first city, they are starting traveling through the roads. But the weather is foggy, so they can’t see where the horse brings them. When the horse reaches a city (including the first one), it goes to one of the cities connected to the current city. But it is a strange horse, it only goes to cities in which they weren't before. In each such city, the horse goes with equal probabilities and it stops when there are no such cities.

    Let the length of each road be 1. The journey starts in the city 1. What is the expected length (expected value of length) of their journey? You can read about expected (average) value by the link https://en.wikipedia.org/wiki/Expected_value.

    Input

    The first line contains a single integer n (1 ≤ n ≤ 100000) — number of cities.

    Then n - 1 lines follow. The i-th line of these lines contains two integers ui and vi (1 ≤ ui, vi ≤ nui ≠ vi) — the cities connected by the i-th road.

    It is guaranteed that one can reach any city from any other by the roads.

    Output

    Print a number — the expected length of their journey. The journey starts in the city 1.

    Your answer will be considered correct if its absolute or relative error does not exceed 10 - 6.

    Namely: let's assume that your answer is a, and the answer of the jury is b. The checker program will consider your answer correct, if .

    Examples
    input
    Copy
    4
    1 2
    1 3
    2 4
    output
    1.500000000000000
    input
    Copy
    5
    1 2
    1 3
    3 4
    2 5
    output
    2.000000000000000
    Note

    In the first sample, their journey may end in cities 3 or 4 with equal probability. The distance to city 3 is 1 and to city 4 is 2, so the expected length is 1.5.

    In the second sample, their journey may end in city 4 or 5. The distance to the both cities is 2, so the expected length is 2.

    题意:n个点,n-1条边,每个点不能重复走,求走的路长度的数学期望。

    思路:E(x)=l[i]*p[i](每条路的长度*这条路的概率)。

    代码:

     1 //#include"bits/stdc++.h"
     2 #include <sstream>
     3 #include <iomanip>
     4 #include"cstdio"
     5 #include"map"
     6 #include"set"
     7 #include"cmath"
     8 #include"queue"
     9 #include"vector"
    10 #include"string"
    11 #include"cstring"
    12 #include"time.h"
    13 #include"iostream"
    14 #include"stdlib.h"
    15 #include"algorithm"
    16 #define db double
    17 #define ll long long
    18 #define vec vector<ll>
    19 #define mt  vector<vec>
    20 #define ci(x) scanf("%d",&x)
    21 #define cd(x) scanf("%lf",&x)
    22 #define cl(x) scanf("%lld",&x)
    23 #define pi(x) printf("%d
    ",x)
    24 #define pd(x) printf("%f
    ",x)
    25 #define pl(x) printf("%lld
    ",x)
    26 //#define rep(i, x, y) for(int i=x;i<=y;i++)
    27 #define rep(i,n) for(int i=0;i<n;i++)
    28 const int N   = 1e6 + 5;
    29 const int mod = 1e9 + 7;
    30 const int MOD = mod - 1;
    31 const int inf = 0x3f3f3f3f;
    32 const db  PI  = acos(-1.0);
    33 const db  eps = 1e-10;
    34 using namespace std;
    35 vector<int> g[N];
    36 bool v[N];
    37 int n;
    38 db ans=0;
    39 void dfs(int u,ll s,db p)
    40 {
    41     v[u]=1;
    42     db cnt=0;
    43     for(int i=0;i<g[u].size();i++) if(!v[g[u][i]]) cnt++;
    44     for(int i=0;i<g[u].size();i++){
    45         int x=g[u][i];
    46         if(!v[x]) v[x]=1,dfs(x,s+1,p/cnt),v[x]=0;
    47     }
    48     if(g[u].size()==1&&v[g[u][0]]==1) ans+=s*p;
    49 }
    50 int main()
    51 {
    52     ci(n);
    53     for(int i=1;i<n;i++){
    54         int x,y;
    55         ci(x),ci(y);
    56         g[x].push_back(y);
    57         g[y].push_back(x);
    58     }
    59     dfs(1,0,1.0);
    60     pd(ans);
    61     return 0;
    62 }
  • 相关阅读:
    IDEA解决git pull冲突
    数据库悲观锁
    安装vsftpd,用户授权
    day05 apollo配置中心+dubbo改造
    Keepalived
    ZK分布式锁原理
    namp扫描端口
    Jedis实现发布订阅功能
    Redis分布式锁
    IDEA中Dev分支合并到master分支
  • 原文地址:https://www.cnblogs.com/mj-liylho/p/8650259.html
Copyright © 2020-2023  润新知