定义 1:(n)阶行列式即(n)级矩阵(A = (a_{ij}))的行列式规定为:
[egin{vmatrix}
a_{11} & a_{12} & cdots & a_{1n} \
a_{21} & a_{22} & cdots & a_{2n} \
vdots & vdots & & vdots \
a_{n1} & a_{n2} & cdots & a_{nn}
end{vmatrix}
:= sum_{j_1j_2dots j_n}(-1)^{ au(j_1j_2dots j_n)}a_{1j_1}a_{2j_2}dots a_{nj_n}
]
其中(sum)是对所有(n)元排列求和。
定义 2:上三角行列式
[egin{vmatrix}
a_{11} & a_{12} & cdots & a_{1n} \
0 & a_{22} & cdots & a_{2n} \
vdots & vdots & ddots & vdots \
0 & 0 & cdots & a_{nn}
end{vmatrix}
]
定理 1:上三角行列式为主对角线上(n)个元素的乘积
定理 2:
[|A| = sum_{k_1k_2dots k_n}(-1)^{ au(i_1i_2dots i_n)+ au(k_1k_2dots k_n)}a_{i_1k_1}a_{i_2s_2}dots a_{i_nk_n}
]
证明:设(n)阶行列式某一项为((-1)^{ au(j_1j_2dots j_n)}a_{1j_1}a_{2j_2}dots a_{nj_n})
根据乘法交换律,通过(s)次两个元素交换位置得(a_{i_1k_1}a_{i_2s_2}dots a_{i_nk_n})
即:((-1)^{ au(i_1i_2dots i_n)} = (-1)^s(-1)^{ au(123dots n)} = (-1)^s)
((-1)^{ au(k_1k_2dots k_n)} = (-1)^s(-1)^{ au(j_1j_2dots j_n)})
两式相乘得:((-1)^{ au(i_1i_2dots i_n)+ au(k_1k_2dots k_n)} = (-1)^{2s}(-1)^{ au(j_1j_2dots j_n)} = (-1)^{ au(j_1j_2dots j_n)})
推论:
[egin{aligned}
|A| &= sum_{j_1j_2dots j_n}(-1)^{ au(j_1j_2dots j_n)}a_{1j_1}a_{2j_2}dots a_{nj_n} \
&= sum_{i_1i_2dots i_n}(-1)^{ au(i_1i_2dots i_n)+ au(12dots n)}a_{i_11}a_{i_22}dots a_{i_nn} \
&= sum_{i_1i_2dots i_n}(-1)^{ au(i_1i_2dots i_n)}a_{i_11}a_{i_22}dots a_{i_nn}
end{aligned}
]