• 学习笔记17:DenseNet实现多分类(卷积基特征提取)


    数据集描述

    总共(200)类图像,每一类图像都存放在一个以类别名称命名的文件夹下,每张图片的命名格式如下图:

    数据预处理

    首先分析一下我们在数据预处理阶段的目标和工作流程

    • 获取每张图像以及对应的标签

    • 划分测试集和训练集

    • 通过写数据集类的方式,获取数据集并进一步获得DataLoader

    • 打印图片,验证效果

    获取图像及标签

    all_imgs_path = glob.glob(r'E:irdsirds**.jpg') # 获取所有图像路径列表
    all_labels_name = [i.split('\')[3].split('.')[1] for i in all_imgs_path] # 获取每张图像的标签名
    label_to_index = dict([(v, k) for k, v in enumerate(unique_labels)]) # 将标签名映射到数值
    # 获取每张图片的数值标签
    all_labels = []
    for img in all_imgs_path:
        for k, v in label_to_index.items():
            if k in img:
                all_labels.append(v)
    

    划分测试集和训练集

    以下代码可以作为模板来用,不做额外解释

    np.random.seed(2021)
    index = np.random.permutation(len(all_imgs_path))
    all_imgs_path = np.array(all_imgs_path)[index]
    all_labels = np.array(all_labels)[index]
    s = int(len(all_imgs_path) * 0.8)
    
    train_path = all_imgs_path[:s]
    train_labels = all_labels[:s]
    test_path = all_imgs_path[s:]
    test_labels = all_labels[s:]
    

    通过写数据集类的方式,获取数据集并进一步获得DataLoader

    以下代码可以作为模板来用,不做额外解释

    transform = transforms.Compose([
        transforms.Resize((224, 224)),
        transforms.ToTensor()
    ])
    
    class BirdsDataset(data.Dataset):
        def __init__(self, img_paths, labels, transform):
            self.imgs = img_paths
            self.labels = labels
            self.transforms = transform
        def __getitem__(self, index):
            img = self.imgs[index]
            label = self.labels[index]
            pil_img = Image.open(img)
            pil_img = pil_img.convert('RGB') # 这一句是专门用来解决一种RuntimeError的
            np_img = np.array(pil_img, dtype = np.uint8)
            if np_img.shape == 2:
                img_data = np.repeat(np_img[:, :, np.newaxis], 3, axis = 2)
                pil_data = Image.fromarray(img_data)
            data = self.transforms(pil_img)
            return data, label
        def __len__(self):
            return len(self.imgs)
    
    train_ds = BirdsDataset(train_path, train_labels, transform)
    test_ds = BirdsDataset(test_path, test_labels, transform)
    train_dl = data.DataLoader(train_ds, batch_size = 32) # 这里只是提取卷积基,不做训练,因此不用shuffle
    test_dl = data.DataLoader(test_ds, batch_size = 32)
    

    结果查看

    取出一个批次的数据,绘图

    img_batch, label_batch = next(iter(train_dl))
    plt.figure(figsize = (12, 8)) # 定义画布大小
    index_to_label = dict([(k, v) for k, v in enumerate(unique_labels)])
    for i, (img, label) in enumerate(zip(img_batch[:3], label_batch[:3])):
        img = img.permute(1, 2, 0).numpy() # 将channel放在最后一维
        plt.subplot(1, 3, i + 1)
        plt.title(index_to_label.get(label.item()))
        plt.imshow(img)
    

    结果如下:

    提取卷积基

    这一阶段的工作流程如下:

    • 获取DenseNet预训练模型,使用feature部分

    • 使用卷积基提取图像特征,并存放在列表中

    预训练模型获取

    my_densenet = models.densenet121(pretrained = True).features
    
    if torch.cuda.is_available():
        my_densenet = my_densenet.cuda()
    
    for p in my_densenet.parameters():
        p.requires_grad = False
    

    提取图像特征

    train_features = []
    train_features_labels = []
    for im, la in train_dl:
        out = my_densenet(im.cuda())
        out = out.view(out.size(0), -1) # 这里需要进行扁平化操作,因为后面要进行线性模型预测
        train_features.extend(out.cpu().data) # 这里注意是extend,extend可以将一个列表加到另一个列表的后面
        train_features_labels.extend(la)
    
    test_features = []
    test_features_labels = []
    for im, la in test_dl:
        out = my_densenet(im.cuda())
        out = out.view(out.size(0), -1)
        test_features.extend(out.cpu().data)
        test_features_labels.extend(la)
    

    重新定义数据集

    因为后面要通过线性模型来预测,因此之前的图像数据集就不好用了

    因此需要用刚刚提取到的特征,重新制作数据集

    class FeatureDataset(data.Dataset):
        def __init__(self, feature_list, label_list):
            self.feature_list = feature_list
            self.label_list = label_list
        def __getitem__(self, index):
            return self.feature_list[index], self.label_list[index]
        def __len__(self):
            return len(self.feature_list)
    
    train_feature_ds = FeatureDataset(train_features, train_features_labels)
    test_feature_ds = FeatureDataset(test_features, test_features_labels)
    train_feature_dl = data.DataLoader(train_feature_ds, batch_size = 32, shuffle = True)
    test_feature_dl = data.DataLoader(test_feature_ds, batch_size = 32)
    

    模型定义与预测

    这里定义一个线性模型即可

    模型定义

    class FCModel(nn.Module):
        def __init__(self, in_size, out_size):
            super().__init__()
            self.linear = nn.Linear(in_size, out_size)
        def forward(self, input):
            return self.linear(input)
    
    in_feature_size = train_features[0].shape[0]
    net = FCModel(in_feature_size, 200)
    
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    net.to(device)
    
    loss_func = torch.nn.CrossEntropyLoss()
    optimizer = torch.optim.Adam(net.parameters(), lr = 0.00001)
    epochs = 30
    

    模型训练

    def fit(epoch, model, trainloader, testloader):
        correct = 0
        total = 0
        running_loss = 0
        
        model.train()
        for x, y in trainloader:
            y = torch.tensor(y, dtype = torch.long)
            x, y = x.to(device), y.to(device)
            y_pred = model(x)
            loss = loss_func(y_pred, y)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            with torch.no_grad():
                y_pred = torch.argmax(y_pred, dim = 1)
                correct += (y_pred == y).sum().item()
                total += y.size(0)
                running_loss += loss.item()
        
        epoch_acc = correct / total
        epoch_loss = running_loss / len(trainloader.dataset)
        
        test_correct = 0
        test_total = 0
        test_running_loss = 0
        
        model.eval()
        with torch.no_grad():
            for x, y in testloader:
                y = torch.tensor(y, dtype = torch.long)
                x, y = x.to(device), y.to(device)
                y_pred = model(x)
                loss = loss_func(y_pred, y)
                y_pred = torch.argmax(y_pred, dim = 1)
                test_correct += (y_pred == y).sum().item()
                test_total += y.size(0)
                test_running_loss += loss.item()
        epoch_test_acc = test_correct / test_total
        epoch_test_loss = test_running_loss / len(testloader.dataset)
        
        print('epoch: ', epoch, 
              'loss: ', round(epoch_loss, 3),
              'accuracy: ', round(epoch_acc, 3),
              'test_loss: ', round(epoch_test_loss, 3),
              'test_accuracy: ', round(epoch_test_acc, 3))
        
        return epoch_loss, epoch_acc, epoch_test_loss, epoch_test_acc
    
    train_loss = []
    train_acc = []
    test_loss = []
    test_acc = []
    for epoch in range(epochs):
        epoch_loss, epoch_acc, epoch_test_loss, epoch_test_acc = fit(epoch, net, train_feature_dl, test_feature_dl)
        train_loss.append(epoch_loss)
        train_acc.append(epoch_acc)
        test_loss.append(epoch_test_loss)
        test_acc.append(epoch_test_acc)
    

    训练结果

  • 相关阅读:
    SQL Server 2005中NTEXT与NVARCHAR(MAX)
    WiX安装选项开始菜单项
    Linq to SQL 查询Tips
    WCF的Message Logging 和Tracing
    Publish Server Performance Monitors with MsChart
    Pushing Data to a Silverlight Client with a WCF Duplex Service
    IronPython 2.0 发布了
    设置系统环境变量立即生效的VBS脚本
    微软网络数据包分析工具 Microsoft Network Monitor 3.2
    SQL Server 2005最新Service Pack 3
  • 原文地址:https://www.cnblogs.com/miraclepbc/p/14378379.html
Copyright © 2020-2023  润新知