题意
有个人有(n)个任务要做。
每个任务需要做(c_i)次,一周当中有(m_i)天可以做,分别是(a_{i_1}, a_{i_2}, dots, a_{i_{m_i}})。
这个人每天最多可以做(k)次任务。
问最少需要多少天可以将这些任务做完。
数据范围
(1 leq n leq 1000)
(1 leq k leq 100)
(1 leq c_i leq 100000)
(1 leq m_i leq 7)
(1 leq a_{i_j} leq 7)
思路
考虑网络流,其实有点类似于二分图多重匹配问题。
二分天数(mid),判断使用(mid)天能否做完所有任务,所有任务数为(sum_{i = 1}^n c_i)。
设虚拟源点(S),虚拟汇点(T)
源点向一周中的每一天连边,容量是当天可做的任务数,即:(k * (mid / 7) + k * (i leq mid \% 7))
一周中的每一天向可做的任务连边,容量是(inf)
每个任务向汇点连边,容量是这项任务需要做的次数
代码
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <vector>
using namespace std;
typedef long long ll;
const int N = 1010, M = 20 * N;
const ll inf = 1e10;
int n, k, S, T;
int h[N], e[M], ne[M], idx;
ll f[M];
int d[N], cur[N];
int c[N], m[N];
vector<int> vec[N];
ll sum;
void add(int a, int b, ll c)
{
e[idx] = b, f[idx] = c, ne[idx] = h[a], h[a] = idx ++;
e[idx] = a, f[idx] = 0, ne[idx] = h[b], h[b] = idx ++;
}
bool bfs()
{
memset(d, -1, sizeof(d));
queue<int> que;
que.push(S);
d[S] = 0, cur[S] = h[S];
while(que.size()) {
int t = que.front();
que.pop();
for(int i = h[t]; ~i; i = ne[i]) {
int ver = e[i];
if(d[ver] == -1 && f[i]) {
d[ver] = d[t] + 1;
cur[ver] = h[ver];
if(ver == T) return true;
que.push(ver);
}
}
}
return false;
}
ll find(int u, ll limit)
{
if(u == T) return limit;
ll flow = 0;
for(int i = cur[u]; ~i && flow < limit; i = ne[i]) {
cur[u] = i;
int ver = e[i];
if(d[ver] == d[u] + 1 && f[i]) {
ll t = find(ver, min(f[i], limit - flow));
if(!t) d[ver] = -1;
f[i] -= t, f[i ^ 1] += t, flow += t;
}
}
return flow;
}
ll dinic()
{
ll res = 0, flow;
while(bfs()) {
while(flow = find(S, inf)) {
res += flow;
}
}
return res;
}
bool check(int mid)
{
memset(h, -1, sizeof(h));
idx = 0;
for(int i = 1; i <= 7; i ++) {
ll x = (ll)k * (mid / 7) + (ll)(i <= mid % 7) * k;
add(S, i, x);
}
for(int i = 1; i <= n; i ++) {
for(auto j : vec[i]) {
add(j, i + 7, inf);
}
}
for(int i = 1; i <= n; i ++) {
add(i + 7, T, c[i]);
}
return sum <= dinic();
}
int main()
{
scanf("%d%d", &n, &k);
S = 0, T = n + 7 + 1;
for(int i = 1; i <= n; i ++) {
int a, b;
scanf("%d%d", &a, &b);
sum += a;
c[i] = a, m[i] = b;
for(int j = 1; j <= m[i]; j ++) {
int x;
scanf("%d", &x);
vec[i].push_back(x);
}
}
int l = 0, r = 1e9;
while(l < r) {
int mid = l + r >> 1;
if(check(mid)) r = mid;
else l = mid + 1;
}
printf("%d
", r);
return 0;
}