• 动物森友会(最大流,二分,科大讯飞杯)


    题意

    有个人有(n)个任务要做。

    每个任务需要做(c_i)次,一周当中有(m_i)天可以做,分别是(a_{i_1}, a_{i_2}, dots, a_{i_{m_i}})

    这个人每天最多可以做(k)次任务。

    问最少需要多少天可以将这些任务做完。

    数据范围

    (1 leq n leq 1000)
    (1 leq k leq 100)
    (1 leq c_i leq 100000)
    (1 leq m_i leq 7)
    (1 leq a_{i_j} leq 7)

    思路

    考虑网络流,其实有点类似于二分图多重匹配问题。

    二分天数(mid),判断使用(mid)天能否做完所有任务,所有任务数为(sum_{i = 1}^n c_i)

    设虚拟源点(S),虚拟汇点(T)

    源点向一周中的每一天连边,容量是当天可做的任务数,即:(k * (mid / 7) + k * (i leq mid \% 7))

    一周中的每一天向可做的任务连边,容量是(inf)

    每个任务向汇点连边,容量是这项任务需要做的次数

    代码

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <queue>
    #include <vector>
    
    using namespace std;
    
    typedef long long ll;
    
    const int N = 1010, M = 20 * N;
    const ll inf = 1e10;
    
    int n, k, S, T;
    int h[N], e[M], ne[M], idx;
    ll f[M];
    int d[N], cur[N];
    int c[N], m[N];
    vector<int> vec[N];
    ll sum;
    
    void add(int a, int b, ll c)
    {
        e[idx] = b, f[idx] = c, ne[idx] = h[a], h[a] = idx ++;
        e[idx] = a, f[idx] = 0, ne[idx] = h[b], h[b] = idx ++;
    }
    
    bool bfs()
    {
        memset(d, -1, sizeof(d));
        queue<int> que;
        que.push(S);
        d[S] = 0, cur[S] = h[S];
        while(que.size()) {
            int t = que.front();
            que.pop();
            for(int i = h[t]; ~i; i = ne[i]) {
                int ver = e[i];
                if(d[ver] == -1 && f[i]) {
                    d[ver] = d[t] + 1;
                    cur[ver] = h[ver];
                    if(ver == T) return true;
                    que.push(ver);
                }
            }
        }
        return false;
    }
    
    ll find(int u, ll limit)
    {
        if(u == T) return limit;
        ll flow = 0;
        for(int i = cur[u]; ~i && flow < limit; i = ne[i]) {
            cur[u] = i;
            int ver = e[i];
            if(d[ver] == d[u] + 1 && f[i]) {
                ll t = find(ver, min(f[i], limit - flow));
                if(!t) d[ver] = -1;
                f[i] -= t, f[i ^ 1] += t, flow += t;
            }
        }
        return flow;
    }
    
    ll dinic()
    {
        ll res = 0, flow;
        while(bfs()) {
            while(flow = find(S, inf)) {
                res += flow;
            }
        }
        return res;
    }
    
    bool check(int mid)
    {
        memset(h, -1, sizeof(h));
        idx = 0;
        for(int i = 1; i <= 7; i ++) {
            ll x = (ll)k * (mid / 7) + (ll)(i <= mid % 7) * k;
            add(S, i, x);
        }
        for(int i = 1; i <= n; i ++) {
            for(auto j : vec[i]) {
                add(j, i + 7, inf);
            }
        }
        for(int i = 1; i <= n; i ++) {
            add(i + 7, T, c[i]);
        }
        return sum <= dinic();
    }
    
    int main()
    {
        scanf("%d%d", &n, &k);
        S = 0, T = n + 7 + 1;
        for(int i = 1; i <= n; i ++) {
            int a, b;
            scanf("%d%d", &a, &b);
            sum += a;
            c[i] = a, m[i] = b;
            for(int j = 1; j <= m[i]; j ++) {
                int x;
                scanf("%d", &x);
                vec[i].push_back(x);
            }
        }
        int l = 0, r = 1e9;
        while(l < r) {
            int mid  = l + r >> 1;
            if(check(mid)) r = mid;
            else l = mid + 1;
        }
        printf("%d
    ", r);
        return 0;
    }
    
  • 相关阅读:
    shell script-条件语句、循环语句
    shell script-判断式
    shell script
    AngularJs(Part 11)--自定义Directive
    AngularJS中的DI
    javascript的DI
    一些奇怪的Javascript用法
    AngularJS(Part 10)--页面导航
    URL中#符号的作用
    AngularJs(Part 9)--AngularJS 表单
  • 原文地址:https://www.cnblogs.com/miraclepbc/p/14376536.html
Copyright © 2020-2023  润新知