• 学习笔记9:卷积神经网络实现MNIST分类(GPU加速)


    相关包导入

    import torch
    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    from torch import nn
    import torch.nn.functional as F
    from torch.utils.data import TensorDataset
    from torch.utils.data import DataLoader
    from sklearn.model_selection import train_test_split
    import torchvision
    from torchvision import datasets, transforms
    %matplotlib inline
    

    设置device

    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    

    如果cuda是可用的,那么就使用"cuda:0",否则使用"cpu"

    数据加载

    transformation = transforms.Compose([
        transforms.ToTensor(),       ## 转化为一个tensor, 转换到0-1之间, 将channnel放在第一位
    ])
    
    train_ds = datasets.MNIST(
        'E:/datasets2/1-18/dataset/daatset',
        train = True,
        transform  =transformation,
        download = True
    )
    
    test_ds = datasets.MNIST(
        'E:/datasets2/1-18/dataset/daatset',
        train = False,
        transform = transformation,
        download = True
    )
    
    train_dl = DataLoader(train_ds, batch_size = 64, shuffle = True)
    test_dl = DataLoader(test_ds, batch_size = 258)
    

    模型定义

    class Model(nn.Module):
        def __init__(self):
            super().__init__()
            self.conv1 = nn.Conv2d(1, 6, 5)
            self.pool = nn.MaxPool2d((2, 2))
            self.conv2 = nn.Conv2d(6, 16, 5)
            self.linear_1 = nn.Linear(16 * 4 * 4, 256)
            self.linear_2 = nn.Linear(256, 10)
        def forward(self, input):
            x = F.relu(self.conv1(input))
            x = self.pool(x)
            x = F.relu(self.conv2(x))
            x = self.pool(x)
            # print(x.size())
            x = x.view(-1, 16 * 4 * 4)
            x = F.relu(self.linear_1(x))
            x = self.linear_2(x)
            return x
    
    loss_func = torch.nn.CrossEntropyLoss()
    

    这里需要注意一点是,卷积、池化之后是不知道数据的shape的,因此可以采用print的方法,测试一下
    具体来说,就是先在全连接层的维度那里随便设置值,然后打印一下
    在输出框里,会出现正确的值,这时再将之前随便设置的值修正过来即可

    模型训练

    def fit(epoch, model, trainloader, testloader):
        correct = 0
        total = 0
        running_loss = 0
        for x, y in trainloader:
            x, y = x.to(device), y.to(device)
            y_pred = model(x)
            loss = loss_func(y_pred, y)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            with torch.no_grad():
                y_pred = torch.argmax(y_pred, dim = 1)
                correct += (y_pred == y).sum().item()
                total += y.size(0)
                running_loss += loss.item()
    
        epoch_acc = correct / total
        epoch_loss = running_loss / len(trainloader.dataset)
        
        test_correct = 0
        test_total = 0
        test_running_loss = 0
        
        with torch.no_grad():
            for x, y in testloader:
                x, y = x.to(device), y.to(device)
                y_pred = model(x)
                loss = loss_func(y_pred, y)
                y_pred = torch.argmax(y_pred, dim = 1)
                test_correct += (y_pred == y).sum().item()
                test_total += y.size(0)
                test_running_loss += loss.item()
        epoch_test_acc = test_correct / test_total
        epoch_test_loss = test_running_loss / len(testloader.dataset)
        
        print('epoch: ', epoch, 
              'loss: ', round(epoch_loss, 3),
              'accuracy: ', round(epoch_acc, 3),
              'test_loss: ', round(epoch_test_loss, 3),
              'test_accuracy: ', round(epoch_test_acc, 3))
        
        return epoch_loss, epoch_acc, epoch_test_loss, epoch_test_acc
    
    model = Model()
    model.to(device)
    optimizer = torch.optim.Adam(model.parameters(), lr = 0.001)
    epochs = 20
    
    train_loss = []
    train_acc = []
    test_loss = []
    test_acc = []
    for epoch in range(epochs):
        epoch_loss, epoch_acc, epoch_test_loss, epoch_test_acc = fit(epoch, model, train_dl, test_dl)
        train_loss.append(epoch_loss)
        train_acc.append(epoch_acc)
        test_loss.append(epoch_test_loss)
        test_acc.append(epoch_test_acc)
    

    这里需要注意的地方是,如果要调用gpu,那么需要将模型和数据都转移到gpu上
    因此,需要调用.to(device)方法进行转移

    训练结果

  • 相关阅读:
    命名之法 —— 男名、女名、家族(古诗词与古典名著)
    findContours函数参数详解
    推理集 —— 特殊的时间
    推理集 —— 特殊的时间
    分蛋糕问题 —— 9 个烧饼分给 10 个人
    分蛋糕问题 —— 9 个烧饼分给 10 个人
    辩论之术
    辩论之术
    findContours 轮廓查找
    坚持是一种品行
  • 原文地址:https://www.cnblogs.com/miraclepbc/p/14345342.html
Copyright © 2020-2023  润新知