• 笔记7:训练过程封装(代码模板)


    相关包

    import torch
    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    from torch import nn
    import torch.nn.functional as F
    from torch.utils.data import TensorDataset
    from torch.utils.data import DataLoader
    from sklearn.model_selection import train_test_split
    import torchvision
    from torchvision import datasets, transforms
    %matplotlib inline
    

    训练过程封装

    def fit(epoch, model, trainloader, testloader):
        correct = 0
        total = 0
        running_loss = 0
        for x, y in trainloader:
            y_pred = model(x)
            loss = loss_func(y_pred, y)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            with torch.no_grad():
                y_pred = torch.argmax(y_pred, dim = 1)
                correct += (y_pred == y).sum().item()
                total += y.size(0)
                running_loss += loss.item()
    
        epoch_acc = correct / total
        epoch_loss = running_loss / len(trainloader.dataset)
        
        test_correct = 0
        test_total = 0
        test_running_loss = 0
        
        with torch.no_grad():
            for x, y in testloader:
                y_pred = model(x)
                loss = loss_func(y_pred, y)
                y_pred = torch.argmax(y_pred, dim = 1)
                test_correct += (y_pred == y).sum().item()
                test_total += y.size(0)
                test_running_loss += loss.item()
        epoch_test_acc = test_correct / test_total
        epoch_test_loss = test_running_loss / len(testloader.dataset)
        
        print('epoch: ', epoch, 
              'loss: ', round(epoch_loss, 3),
              'accuracy: ', round(epoch_acc, 3),
              'test_loss: ', round(epoch_test_loss, 3),
              'test_accuracy: ', round(epoch_test_acc, 3))
        
        return epoch_loss, epoch_acc, epoch_test_loss, epoch_test_acc
    

    这里的correct指的是每一轮中分类正确的样本数
    total指的是每一轮总的样本数
    running_loss指的是在一轮中,损失值的总和

    初始化

    model = Model()
    optimizer = torch.optim.Adam(model.parameters(), lr = 0.0001)
    epochs = 100
    

    模型训练

    train_loss = []
    train_acc = []
    test_loss = []
    test_acc = []
    for epoch in range(epochs):
        epoch_loss, epoch_acc, epoch_test_loss, epoch_test_acc = fit(epoch, model, train_dl, test_dl)
        train_loss.append(epoch_loss)
        train_acc.append(epoch_acc)
        test_loss.append(epoch_test_loss)
        test_acc.append(epoch_test_acc)
    

    训练可视化

    plt.plot(range(1, epochs + 1), train_loss, label = 'train_loss')
    plt.plot(range(1, epochs + 1), test_loss, label = 'test_loss')
    plt.legend()
    
    plt.plot(range(1, epochs + 1), train_acc, label = 'train_acc')
    plt.plot(range(1, epochs + 1), test_acc, label = 'test_acc')
    plt.legend()
    
  • 相关阅读:
    2019 SDN上机第5次作业
    iOS 多线程
    安装pygame
    五分钟学会ios反编译
    反编译ipa包
    Flutter 混合开发(一)
    iOS开发-block异步实现return
    Mac下Anaconda的安装和使用
    挣值分析
    【PMP】挣值分析
  • 原文地址:https://www.cnblogs.com/miraclepbc/p/14335456.html
Copyright © 2020-2023  润新知