-
Kafka核心技术与实战——17 | 消费者组重平衡能避免吗?
- Rebalance 就是让一个 Consumer Group 下所有的 Consumer 实例就如何消费订阅主题的所有分区达成共识的过程
- 在 Rebalance 过程中,所有 Consumer 实例共同参与,在协调者组件的帮助下,完成订阅主题分区的分配
- 但是,在整个过程中,所有实例都不能消费任何消息,因此它对 Consumer 的 TPS 影响很大
- 所谓协调者,在 Kafka 中对应的术语是 Coordinator,它专门为 Consumer Group 服务,负责为 Group 执行 Rebalance 以及提供位移管理和组成员管理等
- 所有 Broker 在启动时,都会创建和开启相应的 Coordinator 组件
- 所有 Broker 都有各自的 Coordinator 组件
- 目前,Kafka 为某个 Consumer Group 确定 Coordinator 所在的 Broker 的算法有 2 个步骤。
- 第 1 步:确定由位移主题的哪个分区来保存该 Group 数据:partitionId=Math.abs(groupId.hashCode() % offsetsTopicPartitionCount)。
- 第 2 步:找出该分区 Leader 副本所在的 Broker,该 Broker 即为对应的 Coordinator
- Rebalance 的弊端是什么呢?总结起来有以下 3 点:
- 1、Rebalance 影响 Consumer 端 TPS。这个之前也反复提到了,这里就不再具体讲了。总之就是,在 Rebalance 期间,Consumer 会停下手头的事情,什么也干不了。
- 2、Rebalance 很慢。如果你的 Group 下成员很多,就一定会有这样的痛点。还记得我曾经举过的那个国外用户的例子吧?他的 Group 下有几百个 Consumer 实例,Rebalance 一次要几个小时。在那种场景下,Consumer Group 的 Rebalance 已经完全失控了。
- 3、Rebalance 效率不高。当前 Kafka 的设计机制决定了每次 Rebalance 时,Group 下的所有成员都要参与进来,而且通常不会考虑局部性原理,但局部性原理对提升系统性能是特别重要的。
- 解决方案
- 干脆就避免 Rebalance 吧,特别是那些不必要的 Rebalance
- 在真实的业务场景中,很多 Rebalance 都是计划外的或者说是不必要的
- Rebalance 发生的时机有三个:
- 组成员数量发生变化
- 订阅主题数量发生变化
- 订阅主题的分区数发生变化
- 后两个是运维的主动操作,不可避免,我们更在意的是 Group 下实例数减少这件事
- Coordinator 会在什么情况下认为某个 Consumer 实例已挂从而要退组呢?
- 当 Consumer Group 完成 Rebalance 之后,每个 Consumer 实例都会定期地向 Coordinator 发送心跳请求,表明它还存活着。如果某个 Consumer 实例不能及时地发送这些心跳请求,Coordinator 就会认为该 Consumer 已经“死”了,从而将其从 Group 中移除,然后开启新一轮 Rebalance。Consumer 端有个参数,叫 session.timeout.ms,就是被用来表征此事的。该参数的默认值是 10 秒,即如果 Coordinator 在 10 秒之内没有收到 Group 下某 Consumer 实例的心跳,它就会认为这个 Consumer 实例已经挂了。可以这么说,session.timout.ms 决定了 Consumer 存活性的时间间隔。
- 除了这个参数,Consumer 还提供了一个允许你控制发送心跳请求频率的参数,就是 heartbeat.interval.ms。这个值设置得越小,Consumer 实例发送心跳请求的频率就越高。频繁地发送心跳请求会额外消耗带宽资源,但好处是能够更加快速地知晓当前是否开启 Rebalance,因为,目前 Coordinator 通知各个 Consumer 实例开启 Rebalance 的方法,就是将 REBALANCE_NEEDED 标志封装进心跳请求的响应体中。
- 除了以上两个参数,Consumer 端还有一个参数,用于控制 Consumer 实际消费能力对 Rebalance 的影响,即 max.poll.interval.ms 参数。它限定了 Consumer 端应用程序两次调用 poll 方法的最大时间间隔。它的默认值是 5 分钟,表示你的 Consumer 程序如果在 5 分钟之内无法消费完 poll 方法返回的消息,那么 Consumer 会主动发起“离开组”的请求,Coordinator 也会开启新一轮 Rebalance。
- 第一类非必要 Rebalance 是因为未能及时发送心跳,导致 Consumer 被“踢出”Group 而引发的。因此,你需要仔细地设置session.timeout.ms 和 heartbeat.interval.ms的值。我在这里给出一些推荐数值,你可以“无脑”地应用在你的生产环境中。
- 设置 session.timeout.ms = 6s。
- 设置 heartbeat.interval.ms = 2s。
- 要保证 Consumer 实例在被判定为“dead”之前,能够发送至少 3 轮的心跳请求,即 session.timeout.ms >= 3 * heartbeat.interval.ms。
- 将 session.timeout.ms 设置成 6s 主要是为了让 Coordinator 能够更快地定位已经挂掉的 Consumer。毕竟,我们还是希望能尽快揪出那些“尸位素餐”的 Consumer,早日把它们踢出 Group。希望这份配置能够较好地帮助你规避第一类“不必要”的 Rebalance。
- 第二类非必要 Rebalance 是 Consumer 消费时间过长导致的。我之前有一个客户,在他们的场景中,Consumer 消费数据时需要将消息处理之后写入到 MongoDB。显然,这是一个很重的消费逻辑。MongoDB 的一丁点不稳定都会导致 Consumer 程序消费时长的增加。此时,max.poll.interval.ms参数值的设置显得尤为关键。如果要避免非预期的 Rebalance,你最好将该参数值设置得大一点,比你的下游最大处理时间稍长一点。就拿 MongoDB 这个例子来说,如果写 MongoDB 的最长时间是 7 分钟,那么你可以将该参数设置为 8 分钟左右。
- 总之,你要为你的业务处理逻辑留下充足的时间。这样,Consumer 就不会因为处理这些消息的时间太长而引发 Rebalance 了。
- 如果你按照上面的推荐数值恰当地设置了这几个参数,却发现还是出现了 Rebalance,那么我建议你去排查一下Consumer 端的 GC 表现,比如是否出现了频繁的 Full GC 导致的长时间停顿,从而引发了 Rebalance。为什么特意说 GC?那是因为在实际场景中,我见过太多因为 GC 设置不合理导致程序频发 Full GC 而引发的非预期 Rebalance 了。
- 小结
- 总而言之,我们一定要避免因为各种参数或逻辑不合理而导致的组成员意外离组或退出的情形,与之相关的主要参数有:
- session.timeout.ms
- heartbeat.interval.ms
- max.poll.interval.ms
- GC 参数
- 按照我们今天所说的内容,恰当地设置这些参数,你一定能够大幅度地降低生产环境中的 Rebalance 数量,从而整体提升 Consumer 端 TPS
-
相关阅读:
初学AOP
通过工厂方式配置bean
Spring中Bean的生命周期方法
Spring中配置文件中引用外部文件
Spring中的SPEL
Spring中的自动装配
初学Spring
暑假写的有关字符串处理的程序
linux查看所有用户信息
python 函数enumerate(x,y)的用法
-
原文地址:https://www.cnblogs.com/minimalist/p/12930614.html
Copyright © 2020-2023
润新知