/* * 堆排序 有2中实现方式: 1. 将数组调整为最小堆O(n) 在不断地删除一个元素 调整为最小堆。 最后将有序数组复制回 A[] 空间复杂度为O(n) 时间复杂度O(n*logn). 2. 还有更好的算法 思路为: 1.先调整为最大堆 将堆顶元素和最后一个元素交换 2.在对剩下的元素重复操作1. 空间复杂度为O(1) 时间复杂度为O(n*log n)。 */ #include "iostream" using namespace std; void adjust(int a[],int i,int n) { int temp = a[i]; int child; for (; 2 * i + 1 < n; i = child) { child = 2 * i + 1; /* 先指向左孩子 */ if (child != n - 1 && a[child + 1] > a[child]) { /* 指向左右孩子中较大的一个 */ child++; } if (temp > a[child]) break; else a[i] = a[child]; } a[i] = temp; } void heapSort(int a[],int n) { /* 堆排序 */ for (int i = (n-1) / 2; i >= 0; i--) { /* 将数组调整为最大堆 O(n)的时间复杂度~ 背个结论就行 学个数据结构感到了数学深深的恶意- - */ adjust(a, i, n); } for (int i = n - 1; i >= 1; i--) { int temp = a[0]; /* 将堆顶的元素与最后一个元素交换 */ a[0] = a[i]; a[i] = temp; adjust(a, 0, i); /* 将剩下的i个数调整为最大堆 */ } } void print(int a[],int n) { for (int i = 0; i < n; i++) { cout << a[i] << " "; } cout << endl; } int main() { int n = 10; int a[10] = { 3,5,2,1,4,0,7,8,6,9 }; heapSort(a,n); print(a, n); }