Buuctf
crypto
0x01传感器
提示是曼联,猜测为曼彻斯特密码
wp:https://www.xmsec.cc/manchester-encode/
cipher:
5555555595555A65556AA696AA6666666955
cipher='5555555595555A65556AA696AA6666666955'
def iee(cipher):
tmp=''
for i in range(len(cipher)):
a=bin(eval('0x'+cipher[i]))[2:].zfill(4)
tmp=tmp+a[1]+a[3]
print(tmp)
plain=[hex(int(tmp[i:i+8][::-1],2))[2:] for i in range(0,len(tmp),8)] print(''.join(plain).upper())
iee(cipher)
要注意的是,这个编码是iee格式的曼彻斯特编码,还有就是得到二进制要8位一组,翻过来(reverse)
Flag:flag{FFFFFED31F645055F9}
坏蛋是罗宾
rabina加密
pk是公钥,可以分解成p和q。分解后,看4个解的二进制形式,找到末尾位110001的,去掉后,转为十进制,求md5
exp:
from hashlib import md5
def EX_GCD(a, b, arr):
if b == 0:
arr[0] = 1
arr[1] = 0
return a
g = EX_GCD(b, a % b, arr)
t = arr[0]
arr[0] = arr[1]
arr[1] = t - int(a // b) * arr[1]
return g
def ModReverse(a, n):
arr = [
0,
1,
]
gcd = EX_GCD(a, n, arr)
if gcd == 1:
return (arr[0] % n + n) % n
else:
return -1
def decrypt_rabin(c, p, q):
n = p * q
m1 = pow(c, (p + 1) / 4, p)
m2 = (-m1) % p
m3 = pow(c, (q + 1) / 4, q)
m4 = (-m3) % q
a = q * ModReverse(q, p)
b = p * ModReverse(p, q)
M1 = (a * m1 + b * m3)%n
M2 = (a * m1 + b * m4)%n
M3 = (a * m2 + b * m3)%n
M4 = (a * m2 + b * m4)%n
print(bin(M1),bin(M2),bin(M3),bin(M4))
c = 162853095
p = 10663
q = 49123
c=c+p*q
decrypt_rabin(c, p, q)
flag=0b10010011100100100101010
print('flag{'+md5(str(flag)).hexdigest()+'}')
Flag:flag{ca5cec442b2734735406d78c88e90f35}
Enterprogame
伪代码,半猜半试,密钥给了,重复一下加密就出来了
Exp:
key='whoami'
s=[]
t=[]
d=0
f=open('file.txt','rb')
cipher=f.read()
for i in range(256):
s.append(i)
t.append(ord(key[i%6]))
j=0
for i in range(256):
j=(j+s[i]+t[i])%256
s[i],s[j]=s[j],s[i]
i=0
j=0
plain=[]
for m in range(38):
i=(i+1)%256
j=(j+s[i])%256
s[i],s[j]=s[j],s[i]
x=((s[i]+(s[j]%256))%256)
plain.append(chr(cipher[m]^s[x]))
print(eval(''.join(plain)))
[GXYCTF2019]CheckIn
这题又让我得知一种偏门的编码Rot47
先base64解码,得到一串密文,再一个rot47就可以了
https://www.qqxiuzi.cn/bianma/ROT5-13-18-47.php
[HDCTF2019bbbbbabyrsa]
这题只要让我学到python的异常处理
题目:
from base64 import b64encode as b32encode
from gmpy2 import invert,gcd,iroot
from Crypto.Util.number import *
from binascii import a2b_hex,b2a_hex
import random
flag = "******************************"
nbit = 128
p = getPrime(nbit)
q = getPrime(nbit)
n = p*q
print p
print n
phi = (p-1)*(q-1)
e = random.randint(50000,70000)
while True:
if gcd(e,phi) == 1:
break;
else:
e -= 1;
c = pow(int(b2a_hex(flag),16),e,n)
print b32encode(str(c))[::-1]
ps:这个b32encode还可以再假点?
爆破e是关键
Exp:
import gmpy2
from Crypto.Util.number import *
from base64 import b64decode
from string import printable
def check(m1):
i=1
try:
m=m1.decode()
except UnicodeDecodeError:
return 0
else:
for j in m:
if j in printable:
continue
else:
i=0
break
return i
p = 177077389675257695042507998165006460849
n = 37421829509887796274897162249367329400988647145613325367337968063341372726061
c = '==gMzYDNzIjMxUTNyIzNzIjMyYTM4MDM0gTMwEjNzgTM2UTN4cjNwIjN2QzM5ADMwIDNyMTO4UzM2cTM5kDN2MTOyUTO5YDM0czM3MjM'[::-1]
cipher=eval(b64decode(c))
q=n//p
phi=(p-1)*(q-1)
e_list=[]
for i in range(50001,70000,2):
if gmpy2.gcd(i,phi)==1:
e_list.append(i)
for i in e_list:
d=gmpy2.invert(i,phi)
m=long_to_bytes(pow(cipher,d,n))
if check(m)==1:
print(m)
check m是不是都是可见字符的时候,python的bytes和str之间的转换问题。不是可见字符转成str会有一个报错,就引入了python的异常处理,try
语句写法
flag:flag{rs4_1s_s1mpl3!#}
[RoarCTF2019]babyRSA
题目:
import sympy
import random
def myGetPrime():
A= getPrime(513)
print(A)
B=A-random.randint(1e3,1e5)
print(B)
return sympy.nextPrime((B!)%A)
p=myGetPrime()
#A1=21856963452461630437348278434191434000066076750419027493852463513469865262064340836613831066602300959772632397773487317560339056658299954464169264467234407
#B1=21856963452461630437348278434191434000066076750419027493852463513469865262064340836613831066602300959772632397773487317560339056658299954464169264467140596
q=myGetPrime()
#A2=16466113115839228119767887899308820025749260933863446888224167169857612178664139545726340867406790754560227516013796269941438076818194617030304851858418927
#B2=16466113115839228119767887899308820025749260933863446888224167169857612178664139545726340867406790754560227516013796269941438076818194617030304851858351026
r=myGetPrime()
n=p*q*r
#n=85492663786275292159831603391083876175149354309327673008716627650718160585639723100793347534649628330416631255660901307533909900431413447524262332232659153047067908693481947121069070451562822417357656432171870951184673132554213690123308042697361969986360375060954702920656364144154145812838558365334172935931441424096270206140691814662318562696925767991937369782627908408239087358033165410020690152067715711112732252038588432896758405898709010342467882264362733
c=pow(flag,e,n)
#e=0x1001
#c=75700883021669577739329316795450706204502635802310731477156998834710820770245219468703245302009998932067080383977560299708060476222089630209972629755965140317526034680452483360917378812244365884527186056341888615564335560765053550155758362271622330017433403027261127561225585912484777829588501213961110690451987625502701331485141639684356427316905122995759825241133872734362716041819819948645662803292418802204430874521342108413623635150475963121220095236776428
#so,what is the flag?
注意的事B!
不是什么运算,是表示b的阶乘
威尔逊定理((p-1)!equiv-1mod p)
关键步骤就是运用威尔逊定理
(b=a-x)
((a-x)!cdot(a-x+1)cdot(a-x+2)cdot…(a-1)equiv-1mod a)
连乘b+1到a-1为止,并求逆。得到-b!,b!=a-b!
Exp:
import gmpy2
from Crypto.Util.number import long_to_bytes
A1=21856963452461630437348278434191434000066076750419027493852463513469865262064340836613831066602300959772632397773487317560339056658299954464169264467234407
B1=21856963452461630437348278434191434000066076750419027493852463513469865262064340836613831066602300959772632397773487317560339056658299954464169264467140596
A2=16466113115839228119767887899308820025749260933863446888224167169857612178664139545726340867406790754560227516013796269941438076818194617030304851858418927
B2=16466113115839228119767887899308820025749260933863446888224167169857612178664139545726340867406790754560227516013796269941438076818194617030304851858351026
n=85492663786275292159831603391083876175149354309327673008716627650718160585639723100793347534649628330416631255660901307533909900431413447524262332232659153047067908693481947121069070451562822417357656432171870951184673132554213690123308042697361969986360375060954702920656364144154145812838558365334172935931441424096270206140691814662318562696925767991937369782627908408239087358033165410020690152067715711112732252038588432896758405898709010342467882264362733
e=0x1001
c=75700883021669577739329316795450706204502635802310731477156998834710820770245219468703245302009998932067080383977560299708060476222089630209972629755965140317526034680452483360917378812244365884527186056341888615564335560765053550155758362271622330017433403027261127561225585912484777829588501213961110690451987625502701331485141639684356427316905122995759825241133872734362716041819819948645662803292418802204430874521342108413623635150475963121220095236776428
def wilison(b,a):
p=1
b=b+1
while b<a:
p*=b
p%=a
b+=1
return a-p
p=gmpy2.next_prime(gmpy2.invert(wilison(B1,A1),A1))
q=gmpy2.next_prime(gmpy2.invert(wilison(B2,A2),A2))
r=n//q//p
phi=(p-1)*(q-1)*(r-1)
d=gmpy2.invert(e,phi)
m=gmpy2.powmod(c,d,n)
print(long_to_bytes(m))
[NCTF2019]childRSA
题目:
from random import choice
from Crypto.Util.number import isPrime, sieve_base as primes
from flag import flag
def getPrime(bits):
while True:
n = 2
while n.bit_length() < bits:
n *= choice(primes)
if isPrime(n + 1):
return n + 1
e = 0x10001
m = int.from_bytes(flag.encode(), 'big')
p, q = [getPrime(2048) for _ in range(2)]
n = p * q
c = pow(m, e, n)
# n = 32849718197337581823002243717057659218502519004386996660885100592872201948834155543125924395614928962750579667346279456710633774501407292473006312537723894221717638059058796679686953564471994009285384798450493756900459225040360430847240975678450171551048783818642467506711424027848778367427338647282428667393241157151675410661015044633282064056800913282016363415202171926089293431012379261585078566301060173689328363696699811123592090204578098276704877408688525618732848817623879899628629300385790344366046641825507767709276622692835393219811283244303899850483748651722336996164724553364097066493953127153066970594638491950199605713033004684970381605908909693802373826516622872100822213645899846325022476318425889580091613323747640467299866189070780620292627043349618839126919699862580579994887507733838561768581933029077488033326056066378869170169389819542928899483936705521710423905128732013121538495096959944889076705471928490092476616709838980562233255542325528398956185421193665359897664110835645928646616337700617883946369110702443135980068553511927115723157704586595844927607636003501038871748639417378062348085980873502535098755568810971926925447913858894180171498580131088992227637341857123607600275137768132347158657063692388249513
# c = 26308018356739853895382240109968894175166731283702927002165268998773708335216338997058314157717147131083296551313334042509806229853341488461087009955203854253313827608275460592785607739091992591431080342664081962030557042784864074533380701014585315663218783130162376176094773010478159362434331787279303302718098735574605469803801873109982473258207444342330633191849040553550708886593340770753064322410889048135425025715982196600650740987076486540674090923181664281515197679745907830107684777248532278645343716263686014941081417914622724906314960249945105011301731247324601620886782967217339340393853616450077105125391982689986178342417223392217085276465471102737594719932347242482670320801063191869471318313514407997326350065187904154229557706351355052446027159972546737213451422978211055778164578782156428466626894026103053360431281644645515155471301826844754338802352846095293421718249819728205538534652212984831283642472071669494851823123552827380737798609829706225744376667082534026874483482483127491533474306552210039386256062116345785870668331513725792053302188276682550672663353937781055621860101624242216671635824311412793495965628876036344731733142759495348248970313655381407241457118743532311394697763283681852908564387282605279108%
先讲非预期解
从加密过程中素数生成中可以看出p,q
应该很接近,此时可以尝试yafu分解大素数
但是命令行模式下无法输入太长,我们新建一个n.txt
,在里面写入n的值,注意最后要加换行!然后用在命令行用命令yafu-x64.exe "factor(@)" -batchfile n.txt
。然后几秒钟后就得到了pq的值。
[GWCTF 2019]BabyRSA
题目:
import hashlib
import sympy
from Crypto.Util.number import *
flag = 'GWHT{******}'
secret = '******'
assert(len(flag) == 38)
half = len(flag) / 2
flag1 = flag[:half]
flag2 = flag[half:]
secret_num = getPrime(1024) * bytes_to_long(secret)
p = sympy.nextprime(secret_num)
q = sympy.nextprime(p)
N = p * q
e = 0x10001
F1 = bytes_to_long(flag1)
F2 = bytes_to_long(flag2)
c1 = F1 + F2
c2 = pow(F1, 3) + pow(F2, 3)
assert(c2 < N)
m1 = pow(c1, e, N)
m2 = pow(c2, e, N)
output = open('secret', 'w')
output.write('N=' + str(N) + '
')
output.write('m1=' + str(m1) + '
')
output.write('m2=' + str(m2) + '
')
output.close()
逻辑很清楚,先尝试分解因子,factor.com 和sage都没分开
但是看了一下,q=sympy.nextprime(p)
,判断p,q相差不大,用yafu可以分解
由于N太大了,不能直接命令行下分解,写入文件才可以。我们新建一个n.txt
,在里面写入n的值,注意最后要加换行!然后用在命令行用命令yafu-x64.exe "factor(@)" -batchfile n.txt
。然后几秒钟后就得到了pq的值
常规rsa手段求出c1,c2
.
F1,F2
满足两道方程,两个未知量,z3一把梭
exp:
import gmpy2
from Crypto.Util.number import long_to_bytes
from z3 import *
N=636585149594574746909030160182690866222909256464847291783000651837227921337237899651287943597773270944384034858925295744880727101606841413640006527614873110651410155893776548737823152943797884729130149758279127430044739254000426610922834573094957082589539445610828279428814524313491262061930512829074466232633130599104490893572093943832740301809630847541592548921200288222432789208650949937638303429456468889100192613859073752923812454212239908948930178355331390933536771065791817643978763045030833712326162883810638120029378337092938662174119747687899484603628344079493556601422498405360731958162719296160584042671057160241284852522913676264596201906163
m1=90009974341452243216986938028371257528604943208941176518717463554774967878152694586469377765296113165659498726012712288670458884373971419842750929287658640266219686646956929872115782173093979742958745121671928568709468526098715927189829600497283118051641107305128852697032053368115181216069626606165503465125725204875578701237789292966211824002761481815276666236869005129138862782476859103086726091860497614883282949955023222414333243193268564781621699870412557822404381213804026685831221430728290755597819259339616650158674713248841654338515199405532003173732520457813901170264713085107077001478083341339002069870585378257051150217511755761491021553239
m2=487443985757405173426628188375657117604235507936967522993257972108872283698305238454465723214226871414276788912058186197039821242912736742824080627680971802511206914394672159240206910735850651999316100014691067295708138639363203596244693995562780286637116394738250774129759021080197323724805414668042318806010652814405078769738548913675466181551005527065309515364950610137206393257148357659666687091662749848560225453826362271704292692847596339533229088038820532086109421158575841077601268713175097874083536249006018948789413238783922845633494023608865256071962856581229890043896939025613600564283391329331452199062858930374565991634191495137939574539546
e=0x10001
p = 797862863902421984951231350430312260517773269684958456342860983236184129602390919026048496119757187702076499551310794177917920137646835888862706126924088411570997141257159563952725882214181185531209186972351469946269508511312863779123205322378452194261217016552527754513215520329499967108196968833163329724620251096080377748737
q = 797862863902421984951231350430312260517773269684958456342860983236184129602390919026048496119757187702076499551310794177917920137646835888862706126924088411570997141257159563952725882214181185531209186972351469946269508511312863779123205322378452194261217016552527754513215520329499967108196968833163329724620251096080377747699
d=gmpy2.invert(e,(p-1)*(q-1))
flag1=gmpy2.powmod(m1,d,N)
flag2=gmpy2.powmod(m2,d,N)
c1=gmpy2.powmod(m1,d,N)
c2=gmpy2.powmod(m2,d,N)
#print("C1={}
C2={}".format(c1,c2))
C1=2732509502629189160482346120094198557857912754
C2=5514544075236012543362261483183657422998274674127032311399076783844902086865451355210243586349132992563718009577051164928513093068525554
F1=Int('F1')
F2=Int('F2')
s=Solver()
s.add((F1+F2)==C1)
s.add(pow(F1,3)+pow(F2,3)==C2)
print(s.check())
print(s.model())
f2 = 1141553212031156130619789508463772513350070909
f1 = 1590956290598033029862556611630426044507841845
print(long_to_bytes(f1)+long_to_bytes(f2))
flag:GWHT{f709e0e2cfe7e530ca8972959a1033b2}