$cos heta_T=frac{oldsymbol w_f}{||oldsymbol w_f||}frac{oldsymbol w_T}{||oldsymbol w_T||}$
因为$oldsymbol w_T=sum_t y_{n(t)}oldsymbol x_{n(t)} in [Tmin_ny_noldsymbol x_n,Tmax_ny_noldsymbol x_n]$
所以$cos heta_T=frac{oldsymbol w_f}{||oldsymbol w_f||}cdotfrac{sum_t y_{n(t)}oldsymbol x_{n(t)}}{||sum_t y_{n(t)}oldsymbol x_{n(t)}||}gefrac{oldsymbol w_f}{||oldsymbol w_f||}cdotfrac{Tmin_ny_noldsymbol x_n}{||Tmax_ny_noldsymbol x_n||}=frac{oldsymbol w_f}{||oldsymbol w_f||}cdotfrac{sqrt Tmin_ny_noldsymbol x_n}{||max_ny_noldsymbol x_n||}=sqrt Tfrac{oldsymbol w_fcdotmin_ny_noldsymbol x_n}{||oldsymbol w_f||||max_ny_noldsymbol x_n||}$
(1) 上式中分子$oldsymbol w_fcdotmin_ny_noldsymbol x_n$一定为正数(因为这里最终解一定没有分类错误)
(2) 因为$cos heta_Tle 1$,所以可以推导出$Tlefrac{||oldsymbol w_f||^2||max_n ||oldsymbol x_n||^2}{(oldsymbol w_fcdotmin_ny_noldsymbol x_n)^2}=frac{||max_noldsymbol x_n||^2}{(min_ny_nfrac{oldsymbol w_f}{||oldsymbol w_f||}cdotoldsymbol x_n)^2}$