题目:
给定一个 n × n 的二维矩阵表示一个图像。 将图像顺时针旋转 90 度。 说明: 你必须在原地旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要使用另一个矩阵来旋转图像。 示例 1: 给定 matrix = [ [1,2,3], [4,5,6], [7,8,9] ], 原地旋转输入矩阵,使其变为: [ [7,4,1], [8,5,2], [9,6,3] ] 示例 2: 给定 matrix = [ [ 5, 1, 9,11], [ 2, 4, 8,10], [13, 3, 6, 7], [15,14,12,16] ], 原地旋转输入矩阵,使其变为: [ [15,13, 2, 5], [14, 3, 4, 1], [12, 6, 8, 9], [16, 7,10,11] ]
解题思路:
1.对其中的每一层进行旋转即可:
class Solution { public: void rotate(vector<vector<int> > &matrix) { int n = matrix.size(); for (int i = 0; i < n / 2; ++i) { for (int j = i; j < n - 1 - i; ++j) { int tmp = matrix[i][j]; matrix[i][j] = matrix[n - 1 - j][i]; matrix[n - 1 - j][i] = matrix[n - 1 - i][n - 1 - j]; matrix[n - 1 - i][n - 1 - j] = matrix[j][n - 1 - i]; matrix[j][n - 1 - i] = tmp; } } } };
2.对矩阵进行转置,然后左右交换即可。
class Solution { public: void rotate(vector<vector<int> > &matrix) { int n = matrix.size(); for (int i = 0; i < n; ++i) { for (int j = i + 1; j < n; ++j) { swap(matrix[i][j], matrix[j][i]); } reverse(matrix[i].begin(), matrix[i].end()); } } };