1)TOP()函数
作用:返回一个字段中最大的N个值,字段类型必须是长整型或float64类型。
语法:
SELECT TOP(<field_key>[,<tag_keys>],<N>)[,<tag_keys>] FROM <measurement_name> [WHERE <stuff>] [GROUP BY <stuff>]
例子1
选择3个water_level最大值
SELECT TOP(water_level,3) FROM h2o_feet
结果
name: h2o_feet -------------- time top 2015-08-29T07:18:00Z 9.957 2015-08-29T07:24:00Z 9.964 2015-08-29T07:30:00Z 9.954
例子2
选择3个water_level最大值,并在输出中包含相关的location标记:
SELECT TOP(water_level,3),location FROM h2o_feet
结果
name: h2o_feet
--------------
time top location
2015-08-29T07:18:00Z 9.957 coyote_creek
2015-08-29T07:24:00Z 9.964 coyote_creek
2015-08-29T07:30:00Z 9.954 coyote_creek
例子3
选择在2个location标签的最大值
SELECT TOP(water_level,location,2) FROM h2o_feet
结果
name: h2o_feet
--------------
time top location
2015-08-29T03:54:00Z 7.205 santa_monica
2015-08-29T07:24:00Z 9.964 coyote_creek
输出显示的位置每个标签值water_level最高值(santa_monica和coyote_creek)。
注:查询语法SELECT TOP(<field_key>,<tag_key>,<N>),标签在哪里有X的不同的值,返回n或x字段的值,以较小者为准,并返回的每个点有一个独特的标签值。要演示这种行为,请参见上面示例查询的结果,其中n等于3,n等于1。
N
=3
SELECT TOP(water_level,location,3) FROM h2o_feet
结果
name: h2o_feet
--------------
time top location
2015-08-29T03:54:00Z 7.205 santa_monica
2015-08-29T07:24:00Z 9.964 coyote_creek
返回两个值而不是三InfluxDB因为位置标签只有两个值(santa_monica和coyote_creek)。
N
=1
SELECT TOP(water_level,location,1) FROM h2o_feet
结果
name: h2o_feet
--------------
time top location
2015-08-29T07:24:00Z 9.964 coyote_creek
比较water_level InfluxDB顶值在每个标签的位置值并返回water_level的较大值。
例子4
选择最大water_level 2个值,范围2015年8月18日 4点与2015年8月18日4点18分,范围每个location标签
SELECT TOP(water_level,2) FROM h2o_feet WHERE time >= '2015-08-18T04:00:00Z' AND time < '2015-08-18T04:24:00Z' GROUP BY location
结果
name: h2o_feet tags: location=coyote_creek time top ---- --- 2015-08-18T04:00:00Z 2.943 2015-08-18T04:06:00Z 2.831 name: h2o_feet tags: location=santa_monica time top ---- --- 2015-08-18T04:06:00Z 4.055 2015-08-18T04:18:00Z 4.124
例子5
选择wtaer_level最大的2个值,在范围2015年8月18日 4点与2015年8月18日4点18分,location为santa_monica
SELECT TOP(water_level,2) FROM h2o_feet WHERE time >= '2015-08-18T04:00:00Z' AND time < '2015-08-18T04:24:00Z' AND location = 'santa_monica'
name: h2o_feet -------------- time top 2015-08-18T04:06:00Z 4.055 2015-08-18T04:18:00Z 4.124
值得注意的是原始数据,water_level等于4.055在2015-08-18t04:06:00z和2015-08-18t04:12:00z。在相同的情况下,InfluxDB返回值更早的那个时间戳。
2、BOTTOM()函数
作用:返回一个字段中最小的N个值。字段类型必须是长整型或float64类型。
语法:
SELECT BOTTOM(<field_key>[,<tag_keys>],<N>)[,<tag_keys>] FROM <measurement_name> [WHERE <stuff>] [GROUP BY <stuff>]
例子1
选择三个最小值
SELECT BOTTOM(water_level,3) FROM h2o_feet
结果
name: h2o_feet -------------- time bottom 2015-08-29T14:30:00Z -0.61 2015-08-29T14:36:00Z -0.591 2015-08-30T15:18:00Z -0.594
例子2
选择三个最小值,在输出中包含相关的location标签:
SELECT BOTTOM(water_level,3),location FROM h2o_feet
name: h2o_feet
--------------
time bottom location
2015-08-29T14:30:00Z -0.61 coyote_creek
2015-08-29T14:36:00Z -0.591 coyote_creek
2015-08-30T15:18:00Z -0.594 coyote_creek
例子3
选择2个location最小值
SELECT BOTTOM(water_level,location,2) FROM h2o_feet
结果
name: h2o_feet -------------- time bottom location 2015-08-29T10:36:00Z -0.243 santa_monica 2015-08-29T14:30:00Z -0.61 coyote_creek
输出显示的位置每个标签值water_level底值(santa_monica和coyote_creek)。
注:查询语法select(< field_key >,< tag_key >,<n>),标签在哪里有X的不同的值,返回n或x字段的值,以较小者为准,并返回的每个点有一个独特的标签值。要演示这种行为,请参见上面示例查询的结果,其中n等于3,n等于1。N
=3
SELECT BOTTOM(water_level,location,3) FROM h2o_feet
结果
name: h2o_feet
--------------
time bottom location
2015-08-29T10:36:00Z -0.243 santa_monica
2015-08-29T14:30:00Z -0.61 coyote_creek
返回两个值而不是三InfluxDB因为位置标签只有两个值(santa_monica和coyote_creek)。
N
=1
SELECT BOTTOM(water_level,location,1) FROM h2o_feet
结果
name: h2o_feet
--------------
time bottom location
2015-08-29T14:30:00Z -0.61 coyote_creek
InfluxDB比较water_level底值在每个标签的位置值并返回water_level值越小。
例子4
每个location标签
选择两个最小值 ,范围在2015年8月18日4点和2015年8月18日4点18分。
SELECT BOTTOM(water_level,2) FROM h2o_feet WHERE time >= '2015-08-18T04:00:00Z' AND time < '2015-08-18T04:24:00Z' GROUP BY location
name: h2o_feet tags: location=coyote_creek time bottom ---- ------ 2015-08-18T04:12:00Z 2.717 2015-08-18T04:18:00Z 2.625 name: h2o_feet tags: location=santa_monica time bottom ---- ------ 2015-08-18T04:00:00Z 3.911 2015-08-18T04:06:00Z 4.055
例子5
选择最小的两个值,在2015年8月18日4点和2015年8月18日4点18分,location为santa_monica
SELECT BOTTOM(water_level,2) FROM h2o_feet WHERE time >= '2015-08-18T04:00:00Z' AND time < '2015-08-18T04:24:00Z' AND location = 'santa_monica'
结果
name: h2o_feet
--------------
time bottom
2015-08-18T04:00:00Z 3.911
2015-08-18T04:06:00Z 4.055
值得注意的是原始数据,water_level等于4.055在2015-08-18t04:06:00z和2015-08-18t04:12:00z。在相同的情况下,InfluxDB返回值更早的那个时间戳。
3)FIRST()函数
作用:返回一个字段中最老的取值。
语法:
SELECT FIRST(<field_key>)[,<tag_key(s)>] FROM <measurement_name> [WHERE <stuff>] [GROUP BY <stuff>]
例子1
选择locaction 为santa_monica,water_level最老的值
SELECT FIRST(water_level) FROM h2o_feet WHERE location = 'santa_monica'
结果
name: h2o_feet
--------------
time first
2015-08-18T00:00:00Z 2.064
例子2
选择最老的water_level,2015-08-18T00:42:00Z
与 2015-08-18T00:54:00Z之间,并输出location tag
SELECT FIRST(water_level),location FROM h2o_feet WHERE time >= '2015-08-18T00:42:00Z' and time <= '2015-08-18T00:54:00Z'
结果
name: h2o_feet
--------------
time first location
2015-08-18T00:42:00Z 7.234 coyote_creek
例子3
选择最老的water_level,以location分组
SELECT FIRST(water_level) FROM h2o_feet GROUP BY location
结果
name: h2o_feet
tags: location = coyote_creek
time first
---- -----
2015-08-18T00:00:00Z 8.12
name: h2o_feet
tags: location = santa_monica
time first
---- -----
2015-08-18T00:00:00Z 2.064
4)LAST()函数
作用:返回一个字段中最新的取值。
语法:
SELECT LAST(<field_key>)[,<tag_key(s)>] FROM <measurement_name> [WHERE <stuff>] [GROUP BY <stuff>]
例子1
以location为santa_monica为条件,选择最新的water_level
SELECT LAST(water_level) FROM h2o_feet WHERE location = 'santa_monica'
结果
name: h2o_feet -------------- time last 2015-09-18T21:42:00Z 4.938
例子2
在2015-08-18T00:42:00Z
与2015-08-18T00:54:00Z之间,选择最新的water_level,并输出location tag
SELECT LAST(water_level),location FROM h2o_feet WHERE time >= '2015-08-18T00:42:00Z' and time <= '2015-08-18T00:54:00Z'
结果
name: h2o_feet
--------------
time last location
2015-08-18T00:54:00Z 6.982 coyote_creek
例子2
选择最新的water_level,以location分组
SELECT LAST(water_level) FROM h2o_feet GROUP BY location
结果
name: h2o_feet
tags: location = coyote_creek
time last
---- ----
2015-09-18T16:24:00Z 3.235
name: h2o_feet
tags: location = santa_monica
time last
---- ----
2015-09-18T21:42:00Z 4.938
Note: LAST()
does not return points that occur after now()
unless the WHERE
clause specifies that time range. See Frequently Encountered Issues for how to query after now()
.
5)MAX()函数
作用:返回一个字段中的最大值。该字段类型必须是长整型,float64,或布尔类型。
语法:
SELECT MAX(<field_key>)[,<tag_key(s)>] FROM <measurement_name> [WHERE <stuff>] [GROUP BY <stuff>]
例子1
选择表h2o_feet中最大的值water_level
SELECT MAX(water_level) FROM h2o_feet
结果
name: h2o_feet
--------------
time max
2015-08-29T07:24:00Z 9.964
例子2
选择表h2o_feet中最大的值water_level,并输出location tag
SELECT MAX(water_level),location FROM h2o_feet
结果
name: h2o_feet
--------------
time max location
2015-08-29T07:24:00Z 9.964 coyote_creek
例子3
每12分选择表h2o_feet中每个location最大的值water_level,指定的时间范围
SELECT MAX(water_level) FROM h2o_feet WHERE time >= '2015-08-18T00:00:00Z' AND time < '2015-08-18T00:54:00Z' GROUP BY time(12m), location
name: h2o_feet
tags: location = coyote_creek
time max
---- ---
2015-08-18T00:00:00Z 8.12
2015-08-18T00:12:00Z 7.887
2015-08-18T00:24:00Z 7.635
2015-08-18T00:36:00Z 7.372
2015-08-18T00:48:00Z 7.11
name: h2o_feet
tags: location = santa_monica
time max
---- ---
2015-08-18T00:00:00Z 2.116
2015-08-18T00:12:00Z 2.126
2015-08-18T00:24:00Z 2.051
2015-08-18T00:36:00Z 2.067
2015-08-18T00:48:00Z 1.991
6)MIN()函数
作用:返回一个字段中的最小值。该字段类型必须是长整型,float64,或布尔类型。
语法:
SELECT MIN(<field_key>)[,<tag_key(s)>] FROM <measurement_name> [WHERE <stuff>] [GROUP BY <stuff>]
例子1
选择表h2o_feet中最小的值water_level
SELECT MIN(water_level) FROM h2o_feet
结果
name: h2o_feet
--------------
time min
2015-08-29T14:30:00Z -0.61
例子2
选择表h2o_feet中最小的值water_level,并输出location tag
SELECT MIN(water_level),location FROM h2o_feet
结果
name: h2o_feet
--------------
time min location
2015-08-29T14:30:00Z -0.61 coyote_creek
例子3
每12分选择表h2o_feet中每个location最小的值water_level,指定的时间范围
SELECT MIN(water_level) FROM h2o_feet WHERE time >= '2015-08-18T00:00:00Z' AND time < '2015-08-18T00:54:00Z' GROUP BY time(12m), location
结果
name: h2o_feet
tags: location = coyote_creek
time min
---- ---
2015-08-18T00:00:00Z 8.005
2015-08-18T00:12:00Z 7.762
2015-08-18T00:24:00Z 7.5
2015-08-18T00:36:00Z 7.234
2015-08-18T00:48:00Z 7.11
name: h2o_feet
tags: location = santa_monica
time min
---- ---
2015-08-18T00:00:00Z 2.064
2015-08-18T00:12:00Z 2.028
2015-08-18T00:24:00Z 2.041
2015-08-18T00:36:00Z 2.057
2015-08-18T00:48:00Z 1.991
7)PERCENTILE()函数
作用:返回排序值排位为N的百分值。字段的类型必须是长整型或float64。
百分值是介于100到0之间的整数或浮点数,包括100。
语法:
SELECT PERCENTILE(<field_key>, <N>)[,<tag_key(s)>] FROM <measurement_name> [WHERE <stuff>] [GROUP BY <stuff>]
例子1
计算location为coyote_creek,排位为5%的water_level值。
SELECT PERCENTILE(water_level,5) FROM h2o_feet WHERE location = 'coyote_creek'
结果
: h2o_feet
--------------
time percentile
2015-09-09T11:42:00Z 1.148
解释:
就是将water_level字段按照不同的location求百分比,然后取第五位数据。
值1.148大于5%的位置的值(The value 1.148
is larger than 5% of the values in water_level
where location
equals coyote_creek
.)
例子2
计算location为coyote_creek,排位为5%的water_level值,并输出location tag。
SELECT PERCENTILE(water_level,5),location FROM h2o_feet
结果
name: h2o_feet
--------------
time percentile location
2015-08-28T12:06:00Z 1.122 santa_monica
例子2
计算以location分组,排在100%的值
SELECT PERCENTILE(water_level, 100) FROM h2o_feet GROUP BY location
结果
name: h2o_feet
tags: location = coyote_creek
time percentile
---- ----------
2015-08-29T07:24:00Z 9.964
name: h2o_feet
tags: location = santa_monica
time percentile
---- ----------
2015-08-29T03:54:00Z 7.205
注意:PERCENTILE(<field_key>,100)相当于MAX(<field_key>)
目前,PERCENTILE(<field_key>,0)不相当于MIN(<field_key>)
注意,PERCENTILE(<field_key>, 50)接近于MEDIAN(),MEDIAN()如果是偶娄个则返回中间两个值的平均值
详细资料可参考官网:https://docs.influxdata.com/influxdb/v1.3/query_language/functions