• Django ORM 引发的数据库 N+1 性能问题


    背景描述

    最近在使用 Django 时,发现当调用 api 后,在数据库同一个进程下的事务中,出现了大量的数据库查询语句。调查后发现,是由于 Django ORM 的机制所引起。

    Django Object-Relational Mapper(ORM)作为 Django 比较受欢迎的特性,在开发中被大量使用。我们可以通过它和数据库进行交互,实现 DDL 和 DML 操作.

    具体来说,就是使用 QuerySet 对象来检索数据, 而 QuerySet 本质上是通过在预先定义好的 model 中的 Manager 和数据库进行交互。

    Manager 是 Django model 提供数据库查询的一个接口,在每个 Model 中都至少存在一个 Manager 对象。但今天要介绍的主角是 QuerySet ,它并不是关键。

    为了更清晰的表述问题,假设在数据库有如下的表:

    device 表,表示当前网络中纳管的物理设备。

    interface 表,表示物理设备拥有的接口。

    interface_extension 表,和 interface 表是一对一关系,由于 interface 属性过多,用于存储一些不太常用的接口属性。

    class Device(models.Model):
        name = models.CharField(max_length=100, unique=True)  # 添加设备时的设备名
        hostname = models.CharField(max_length=100, null=True)  # 从设备中获取的hostname
        ip_address = models.CharField(max_length=100, null=True)  # 设备管理IP
    
    class Interface(models.Model):
        device = models.ForeignKey(Device, on_delete=models.PROTECT, null=False,related_name='interfaces')) # 属于哪台设备
        name = models.CharField(max_length=100)  # 端口名
        collect_status = models.CharField(max_length=30, default='active')
        class Meta:
            unique_together = ("device", "name")  # 联合主键
            
    class InterfaceExtension(models.Model):
        interface = models.OneToOneField(
            Interface, on_delete=models.PROTECT, null=False, related_name='ex_info')
            
        endpoint_device_id = models.ForeignKey( # 绑定了的终端设备
            Device, db_column='endpoint_device_id',
            on_delete=models.PROTECT, null=True, blank=True)
            
        endpoint_interface_id = models.ForeignKey(
            Interface, db_column='endpoint_interface_id', on_delete=models.PROTECT, # 绑定了的终端设备的接口
            null=True, blank=True)
    

    简单说一下之间的关联关系,一个设备拥有多个接口,一个接口拥有一个拓展属性。

    在接口的拓展属性中,可以绑定另一台设备上的接口,所以在 interface_extension 还有两个参考外键。

    为了更好的分析 ORM 执行 SQL 的过程,需要将执行的 SQL 记录下来,可以通过如下的方式:

    • 在 django settings 中打开 sql log 的日志
    • 在 MySQL 中打开记录 sql log 的日志

    django 中,在 settings.py 中配置如下内容, 就可以在控制台上看到 SQL 执行过程:

    DEBUG = True
    
    import logging
    l = logging.getLogger('django.db.backends')
    l.setLevel(logging.DEBUG)
    l.addHandler(logging.StreamHandler())
    
    LOGGING = {
        'version': 1,
        'disable_existing_loggers': False,
        'filters': {
            'require_debug_false': {
                '()': 'django.utils.log.RequireDebugFalse'
            }
        },
        'handlers': {
            'mail_admins': {
                'level': 'ERROR',
                'filters': ['require_debug_false'],
                'class': 'django.utils.log.AdminEmailHandler'
            },'console': {
                'level': 'DEBUG',
                'class': 'logging.StreamHandler',
            },
        },
        'loggers': {
            'django.db': {
                'level': 'DEBUG',
                'handlers': ['console'],
            },
        }
    }
    

    或者直接在 MySQL 中配置:

    # 查看记录 SQL 的功能是否打开,默认是关闭的:
    SHOW VARIABLES LIKE "general_log%";
    
    # 将记录功能打开,具体的 log 路径会通过上面的命令显示出来。
    SET GLOBAL general_log = 'ON';
    

    QuerySet

    假如要通过 QuerySet 来查询,所有接口的所属设备的名称:

    interfaces = Interface.objects.filter()[:5] # hit once database
    
    for interface in interfaces: 
        print('interface_name: ', interface.name,
              'device_name: ', interface.device.name) # hit database again
    

    上面第一句取前 5 条 interface 记录,对应的 raw sql 就是 select * from interface limit 5; 没有任何问题。

    但下面取接口所属的设备名时,就会出现反复调用数据库情况:当遍历到一个接口,就会通过获取的 device_id 去数据库查询 device_name. 对应的 raw sql 类似于:select name from device where id = {}.

    也就是说,假如有 10 万个接口,就会执行 10 万次查询,性能的消耗可想而知。算上之前查找所有接口的一次查询,合称为 N + 1 次查询问题。

    解决方式也很简单,如果使用原生 SQL,通常有两种解决方式:

    • 在第一次查询接口时,使用 join,将 interface 和 device 关联起来。这样仅会执行一次数据库调用。
    • 或者在查询接口后,通过代码逻辑,将所需要的 device_id 以集合的形式收集起来,然后通过 in 语句来查询。类似于 SELECT name FROM device WHERE id in (....). 这样做仅会执行两次 SQL。

    具体选择哪种,就要结合具体的场景,比如有无索引,表的大小具体分析了。

    回到 QuerySet,那么如何让 QuerySet 解决这个问题呢,同样也有两种解决方法,使用 QuerySet 中提供的 select_related() 或者 prefetch_related() 方法。

    在调用 select_related() 方法时,Queryset 会将所属 Model 的外键关系,一起查询。相当于 raw sql 中的 join . 一次将所有数据同时查询出来。select_related() 主要的应用场景是:某个 model 中关联了外键(多对一),或者有 1 对 1 的关联关系情况。

    还拿上面的查找接口的设备名称举例的话:

    interfaces = Interface.objects.select_related('device').filter()[:5] # hit once database
    
    for interface in interfaces:
        print('interface_name: ', interface.name,
             'device_name: ', interface.device.name) # don't need to hit database again 
    

    上面的查询 SQL 就类似于:SELECT xx FROMinterface INNER JOIN device ON interface.device_id = device.id limit5,注意这里是 inner join 是因为是非空外键。

    select_related() 还支持一个 model 中关联了多个外键的情况:如拓展接口,查询绑定的设备名称和接口名称:

    ex_interfaces = InterfaceExtension.objects.select_related(
        'endpoint_device_id', 'endpoint_interface_id').filter()[:5] 
    
    # or
    
    ex_interfaces = InterfaceExtension.objects.select_related(
        'endpoint_device_id').select_related('endpoint_interface_id').filter()[:5] 
    

    上面的 SQL 类似于:

    SELECT XXX FROM interface_extension LEFT OUTER JOIN device ON (interface_extension.endpoint_device_id=device.id) 
    LEFT OUTER JOIN interface ON (interface_extension.endpoint_interface_id=interface.id)
    LIMIT 5
    

    这里由于是可空外键,所以是 left join.

    如果想要清空 QuerySet 的外键关系,可以通过:queryset.select_related(None) 来清空。

    prefetch_relatedselect_related 一样都是为了避免大量查询关系时的数据库调用。只不过为了避免多表 join 后产生的巨大结果集以及效率问题, 所以 select_related 比较偏向于外键(多对一)和一对一的关系。

    prefetch_related 的实现方式则类似于之前 raw sql 的第二种,分开查询之间的关系,然后通过 python 代码,将其组合在一起。所以 prefetch_related 可以很好的支持一对多或者多对多的关系。

    还是拿查询所有接口的设备名称举例:

    interfaces = Interface.objects.prefetch_related('device').filter()[:5] # hit twice database
    
    for interface in interfaces:
        print('interface_name: ', interface.name,
             'device_name: ', interface.device.name) # don't need to hit database again
    

    换成 prefetch_related 后,sql 的执行逻辑变成这样:

    1. "SELECT * FROM interface "
    2. "SELECT * FROM device where device_id in (.....)"
    3. 然后通过 python 代码将之间的关系组合起来。

    如果查询所有设备具有哪些接口也是一样:

    devices = Device.objects.prefetch_related('interfaces').filter()[:5] # hit twice database
    for device in devices:
        print('device_name: ', device.name,
              'interface_list: ', device.interfaces.all())
    

    执行逻辑也是:

    1. "SELECT * FROM device"
    2. "SELECT * FROM interface where device_id in (.....)"
    3. 然后通过 python 代码将之间的关系组合起来。

    如果换成多对多的关系,在第二步会变为 join 后在 in,具体可以直接尝试。

    但有一点需要注意,当使用的 QuerySet 有新的逻辑查询时, prefetch_related 的结果不会生效,还是会去查询数据库:

    如在查询所有设备具有哪些接口上,增加一个条件,接口的状态是 up 的接口

    devices = Device.objects.prefetch_related('interfaces').filter()[:5] # hit twice database
    for device in devices:
        print('device_name: ', device.name,
             'interfaces:', device.interfaces.filter(collect_status='active')) # hit dababase repeatly
    

    执行逻辑变成:

    1. "SELECT * FROM device"
    2. "SELECT * FROM interface where device_id in (.....)"
    3. 一直重复 device 的数量次: "SELECT * FROM interface where device_id = xx and collect_status='up';"
    4. 最后通过 python 组合到一起。

    原因在于:之前的 prefetch_related 查询,并不包含判断 collect_status 的状态。所以对于 QuerySet 来说,这是一个新的查询。所以会重新执行。

    可以利用 Prefetch 对象 进一步控制并解决上面的问题:

    devices = Device.objects.prefetch_related(
        Prefetch('interfaces', queryset=Interface.objects.filter(collect_status='active'))
        ).filter()[:5] # hit twice database
    for device in devices:
        print('device_name: ', device.name, 'interfaces:', device.interfaces) 
    

    执行逻辑变成:

    1. "SELECT * FROM device"
    2. "SELECT * FROM interface where device_id in (.....) and collect_status = 'up';"
    3. 最后通过 python 组合到一起。

    可以通过 Prefetch 对象的 to_attr,来改变之间关联关系的名称:

    devices = Device.objects.prefetch_related(
        Prefetch('interfaces', queryset=Interface.objects.filter(collect_status='active'), to_attr='actived_interfaces')
        ).filter()[:5] # hit twice database
    for device in devices:
        print('device_name: ', device.name, 'interfaces:', device.actived_interfaces) 
    

    可以看到通过 Prefetch,可以实现控制关联那些有关系的对象。

    最后,对于一些关联结构较为复杂的情况,可以将 prefetch_related 和 select_related 组合到一起,从而控制查询数据库的逻辑。

    比如,想要查询全部接口的信息,及其设备名称,以及拓展接口中绑定了对端设备和接口的信息。

    queryset = Interface.objects.select_related('ex_info').prefetch_related(
                'ex_info__endpoint_device_id', 'ex_info__endpoint_interface_id')
    

    执行逻辑如下:

    1. SELECT XXX FROM interface LEFT OUTER JOIN interface_extension ON (interface.id=interface_extension .interface_id)
    2. SELECT XXX FROM device where id in ()
    3. SELECT XXX FROM interface where id in ()
    4. 最后通过 python 组合到一起。

    第一步, 由于 interface 和 interface_extension 是 1 对 1 的关系,所以使用 select_related 将其关联起来。

    第二三步:虽然 interface_extension 和 endpoint_device_id 和 endpoint_interface_id 是外键关系,如果继续使用 select_related 则会进行 4 张表连续 join,将其换成 select_related,对于 interface_extension 外键关联的属性使用 in 查询,因为interface_extension 表的属性并不是经常使用的。

    总结

    在这篇文章中,介绍了 Django N +1 问题产生的原因,解决的方法就是通过调用 QuerySet 的 select_related 或 prefetch_related 方法。

    对于 select_related 来说,应用场景主要在外键和一对一的关系中。对应到原生的 SQL 类似于 JOIN 操作。

    对于 prefetch_related 来说,应用场景主要在多对一和多对多的关系中。对应到原生的 SQL 类似于 IN 操作。

    通过 Prefetch 对象,可以控制 select_related 和 prefetch_related 和那些有关系的对象做关联。

    最后,在每个 QuerySet 可以通过组合 select_related 和 prefetch_related 的方式,更改查询数据库的逻辑。

    参考

    https://docs.djangoproject.com/en/3.1/ref/models/querysets/](https://docs.djangoproject.com/en/3.1/ref/models/querysets/)

    https://medium.com/better-programming/django-select-related-and-prefetch-related-f23043fd635d

    https://stackoverflow.com/questions/39669553/django-rest-framework-setting-up-prefetching-for-nested-serializers

    [https://medium.com/@michael_england/debugging-query-performance-issues-when-using-the-django-orm-f05f83041c5f

  • 相关阅读:
    linux 免密登录
    mysql 重置从库
    elasticsearch原理及简介
    多线程编程--心得
    为什么我们做分布式使用Redis?
    JAVA-JVM调优
    JAVA-JVM调优标志
    Spirng-Mvc之Servlet篇
    Agent Job代理 执行SSIS Package
    Python之爬虫的理解
  • 原文地址:https://www.cnblogs.com/michael9/p/13797403.html
Copyright © 2020-2023  润新知