• Python 代码片段收藏


    list 列表相关

    list 中最小值、最大值

    import operator
     
    values = [1, 2, 3, 4, 5]
     
    min_index, min_value = min(enumerate(values), key=operator.itemgetter(1))
    max_index, max_value = max(enumerate(values), key=operator.itemgetter(1))
     
    print('min_index:', min_index, 'min_value:', min_value)
    print('max_index:', max_index, 'max_value:', max_value)
    
    # Out
    min_index: 0 min_value: 1
    max_index: 4 max_value: 5
    

    list 中连续元素之间的差

    from itertools import islice
    ls = [1,2,3,5,8]
    diff = [j-i for i,j in zip(ls, islice(ls, 1, None))]
    print(diff)
    
    # Out
    [1, 1, 2, 3]
    

    删除列表中的重复元素

    下面这种方法不能维持顺序:

    x = [1, 8, 4, 5, 5, 5, 8, 1, 8]
    list(set(x))
    
    # Out
    [8, 1, 4, 5]
    

    下面的方法,可以维持顺序:

    from collections import OrderedDict
    x = [1, 8, 4, 5, 5, 5, 8, 1, 8]
    list(OrderedDict.fromkeys(x))
    
    # Out
    [1,8,4,5]
    

    并行遍历2个列表

    a = [1, 2, 3]
    b = [4, 5, 6]
    
    for (a_val, b_val) in zip(a, b):
        print(a_val, b_val)
    
    # Out
    1 4
    2 5
    3 6
    

    合并列表值

    输入的两个数组,输出一个是数组&值相加或者相乘:

    # input
    first = [1,2,3,4,5]
    second = [6,7,8,9,10]
    
    #output
    three = [7,9,11,13,15]
    
    # The zip function is useful here, used with a list comprehension.
    # add
    [x + y for x, y in zip(first, second)]
    
    # other
    [x*y for x, y in zip(first, second)]
    [max(x,y) for x, y in zip(first, second)]
    

    参考:

    字典处理

    字典做交、差、并

    a={'name':'michael','age':"27",'sex':'male'}
    b={'name':'hqh','age':'27'}
    {k:a[k] for k in a.keys()-b.keys()}
    out: {'sex': 'male'}
    dict(a.items()-b.items())
    out: {'name': 'michael', 'sex': 'male'}
    

    需要注意的是,当字典的值有字典时,a.items()-b.items() 这种方式会报错 TypeError: unhashable type: 'dict'

    参考:

    字典的Key与Value对调

    m = {'A': 1, 'B': 2, 'C': 3}
    invert_map_key_value = lambda m: dict(zip(m.values(), m.keys()))
    invert_map_key_value(m)
    
    # output: {1: 'A', 2: 'B', 3: 'C'}
    

    参考:

    合并字典值

    >>> from collections import Counter
    >>> A = Counter({'a':1, 'b':2, 'c':3})
    >>> B = Counter({'b':3, 'c':4, 'd':5})
    >>> A + B
    Counter({'c': 7, 'b': 5, 'd': 5, 'a': 1})
    

    字典的增加

    update 方法往已有字典中增加键值对:

    deploy_info=dict()
    for idx, row in raw_data.iterrows():
        temp=dict()
        version = row['version']
        app_comp_name = row['app_comp_name']
        pkg_name = "{}_{}.tar.gz".format(app_comp_name, version)
        time.sleep(2)
        data = get_verify_value(api_url,pkg_name)
        temp = {
            deploy_history_id:{
                'app_comp_name':app_comp_name,
                'version':version,
                'pkg_name':pkg_name,
                'data':data
            }
        }
        deploy_info.update(temp)
    

    字符串相关

    索引

    tag='hx/mitaka_compute/12.0.0'
    [m.start() for m in re.finditer('/',tag)]
    

    参考:

    将百分号的百分比字符串转为数字

    p="75%"
    float(p.strip('%'))/100
    

    参考:

    剔除分隔符

    通常做法:

    ''.join('A|B|C|D|E|F|G'.split('|'))
    
    # output: 'ABCDEFG'
    

    itertools.islice,因为可以节选字符串:

    import itertools
    
    ''.join(itertools.islice('A|B|C|D|E|F|G', 6, None, 2))
    # output: 'DEFG'
    
    ''.join(itertools.islice('A|B|C|D|E|F|G', 0, None, 2))
    # output: ''ABCDEFG'
    

    美观打印

    import pprint as pp
    animals = [{'animal': 'dog', 'legs': 4, 'breeds': ['Border Collie', 'Pit Bull', 'Huskie']}, {'animal': 'cat', 'legs': 4, 'breeds': ['Siamese', 'Persian', 'Sphynx']}]
    pp.pprint(animals, width=1)
    
    # Out
    [{'animal': 'dog',
      'breeds': ['Border '
                 'Collie',
                 'Pit '
                 'Bull',
                 'Huskie'],
      'legs': 4},
     {'animal': 'cat',
      'breeds': ['Siamese',
                 'Persian',
                 'Sphynx'],
      'legs': 4}]
    

    width参数指定一行上最大的字符数。设置width为1确保字典打印在单独的行

    文件读写

    基本文件读 txt

    # Note: rb opens file in binary mode to avoid issues with Windows systems
    # where 'rn' is used instead of 'n' as newline character(s).
     
     
    # A) Reading in Byte chunks
    reader_a = open("file.txt", "rb")
    chunks = []
    data = reader_a.read(64)  # reads first 64 bytes
    while data != "":
        chunks.append(data)
        data = reader_a.read(64)
    if data:
        chunks.append(data)
    print(len(chunks))
    reader_a.close()
     
     
    # B) Reading whole file at once into a list of lines
    with open("file.txt", "rb") as reader_b:   # recommended syntax, auto closes
        data = reader_b.readlines() # data is assigned a list of lines
    print(len(data))
     
     
    # C) Reading whole file at once into a string
    with open("file.txt", "rb") as reader_c:
        data = reader_c.read() # data is assigned a list of lines
    print(len(data))
     
     
    # D) Reading line by line into a list
    data = []
    with open("file.txt", "rb") as reader_d:
        for line in reader_d:
            data.append(line)
    print(len(data))
    

    json 读写json文件

    • json.loads()是将str转化成dict格式,json.dumps()是将dict转化成str格式。
    • json.load()和json.dump()也是类似的功能,只是与文件操作结合起来了。
    # 解码
    import json
    with open('build_info.json','r') as f:
        array = json.load(f)
    print(array)
    

    在编码JSON的时候,还有一些选项很有用。 如果你想获得漂亮的格式化字符串后输出,可以使用 json.dumps()indent参数。 它会使得输出和pprint() 函数效果类似:

    >>> print(json.dumps(data))
    {"price": 542.23, "name": "ACME", "shares": 100}
    >>> print(json.dumps(data, indent=4))
    {
        "price": 542.23,
        "name": "ACME",
        "shares": 100
    }
    >>>
    

    保存为 json 文件:

    # 编码
    import json
    a = {"name":"michael"}
    with open("demo.json","w") as f:
    	json.dump(a, f, indent=4)
    

    时间日期

    基本时间(time)和日期(date)

    import time
     
    # print time HOURS:MINUTES:SECONDS
    # e.g., '10:50:58'
    print(time.strftime("%H:%M:%S"))
     
    # print current date DAY:MONTH:YEAR
    # e.g., '05/01/2019'
    print(time.strftime("%d/%m/%Y"))
    
    # Out
    15:18:03
    05/01/2019
    

    字符串和日期的相互转换

    strptime 是将字符串转换为 datetime,其实这个方法的全称是 “string parse time”,叫做字符串解析成时间,重点在解析(parse):

    from datetime import datetime
    
    date_obj = datetime.strptime('2018-10-15 20:59:29', '%Y-%m-%d %H:%M:%S')
    print(type(date_obj),date_obj)
    
    # Out
    <class 'datetime.datetime'> 2018-10-15 20:59:29
    

    strftime 是将 datetime 转换为字符串,全称是 “string format time”,翻译过来就是将字符串的形式来格式化时间,重点在格式化(format),使之以一种可读的字符串形式返回:

    from datetime import datetime
    date_obj = datetime.now()
    date_string = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    print(type(date_string),date_string)
    
    # Out
    <class 'str'> 2019-01-05 18:41:04
    

    参考:

    编码相关

    Python Requests 编码问题

    下载

    Python下载文件

    Python根据url下载目录或者文件

        def download_package(self, package_url):
            print("start download_build_result")
            if not package_url.endswith("/"):
                package_url += '/'
            cmd = "wget -c -r -nd -np -P %s %s" % ("output", package_url)
            print(cmd)
            os.system(cmd)
            print(os.getcwd())
            print("finish download_build_result")
    

    数据处理

    Python Pandas处理Excel数据

    逐行处理数据 iterrows

    for idx, row in data.iterrows():
        project_name=row['projectName']
        tag_name=row['tagName']
    

    Pandas追加模式写入csv文件

    data = pd.DataFrame([[1,2,3]])
    csv_headers=['A','B','C']
    data.to_csv('./Marvel3_yingpping.csv', header=csv_headers, index=False, mode='a+', encoding='utf-8')
    data = pd.DataFrame([[4,5,6]])
    data.to_csv('./Marvel3_yingpping.csv', header=False, index=False, mode='a+', encoding='utf-8')
    data = pd.DataFrame([[7,8,9]])
    data.to_csv('./Marvel3_yingpping.csv', header=False, index=False, mode='a+', encoding='utf-8')
    

    Python-CSV-Excel

    for idx, row in data.iterrows():
        project_name=row['projectName']
        tag_name=row['tagName']
    

    to_csv表格中文乱码

    ipython中直接打印df,中文没有乱码,但是to_csv方法存储时,中文有乱码。

    df.to_csv('file.csv',encoding='utf-8-sig')
    

    参考:

    itero

    看题目:

    Shell/Linux 操作相关

    Python运行shell命令的函数:

    def run(cmd_str, fatal=True):
        # this is not a good implement
        log.command(log.term.cmd(cmd_str))
        ret = os.system(cmd_str)
        if ret is not 0:
            if fatal:
                log.error('[ERROR] run cmd: %s failed', cmd_str)
                os._exit(1)
            else:
                log.info('[INFO] %s is not fatal' % cmd_str)
    

    调用外部的命令

    # 
    import subprocess
    
    subprocess.call(['mkdir', 'empty_folder'])
    
    # 运行一条命令并输出得到的结果
    output = subprocess.check_output(['ls', '-l'])
    
    # 上面的调用是阻塞的
    # 如果运行shell中内置的命令,如cd或者dir,需要指定标记shell=True
    output = subprocess.call(['cd', '/'], shell=True)
    
    # 对于更高级的用例,可以使用 Popen constructor。
    

    Python 3.5引进了一个新的run函数,它的行为与call和check_output很相似。如果你使用的是3.5版本或更高版本,看一看run的文档,里面有一些有用的例子。否则,如果你使用的是Python 3.5以前的版本或者你想保持向后兼容性,上面的call和check_output代码片段是你最安全和最简单的选择

    参考:

    计算文件的校验值

    可以计算文件的 md5sha256 等值

    # https://pymotw.com/3/hashlib/index.html#module-hashlib
    def get_verify_value(file_path, verify_type):
        """
        计算指定文件的校验值
        :param file_path: 文件路径
        :param verify_type: 校验值类型,md5 sha256 等等
        :return:
        """
        h = hashlib.new(verify_type)
        if not file_path:
            return None
        with open(file_path, 'rb') as f:
            for block in iter(lambda: f.read(4096), b""):
                h.update(block)
        return h.hexdigest()
    

    性能相关

    脚本的运行时间

    import time
     
    start_time = time.clock()
     
    for i in range(10000000):
        pass
     
    elapsed_time = time.clock() - start_time
    print("Time elapsed: {} seconds".format(elapsed_time))
    
    # Out
    Time elapsed: 0.30121700000000007 seconds
    
    import timeit
    elapsed_time = timeit.timeit('for i in range(10000000): pass', number=1)
    print("Time elapsed: {} seconds".format(elapsed_time))
    
    # Out
    Time elapsed: 0.2051873060000844 seconds
    

    计算运行时间

    class Timer(object):
        def __enter__(self):
            self.error = None
            self.start = time.time()
            return self
        def __exit__(self, type, value, tb):
            self.finish = time.time()
            if type:
                self.error = (type, value, tb)
        def duration(self):
            return self.finish - self.start
    with Timer() as timer:
        func()
    timer.duration()
    
    # Out
    0.29994797706604004
    

    参考:

    目录、路径相关

    基本目录文件操作

    import os
    import shutil
    import glob
     
    # working directory
    c_dir = os.getcwd()                 # show current working directory
    os.listdir(c_dir)                   # shows all files in the working directory
    os.chdir('~/Data')                  # change working directory
     
     
    # get all files in a directory
    glob.glob('/Users/sebastian/Desktop/*')
     
    # e.g.,  ['/Users/sebastian/Desktop/untitled folder', '/Users/sebastian/Desktop/Untitled.txt']
     
    # walk
    tree = os.walk(c_dir)
    # moves through sub directories and creates a 'generator' object of tuples
    # ('dir', [file1, file2, ...] [subdirectory1, subdirectory2, ...]),
    #    (...), ...
     
    #check files: returns either True or False
    os.exists('../rel_path')
    os.exists('/home/abs_path')
    os.isfile('./file.txt')
    os.isdir('./subdir')
     
     
    # file permission (True or False
    os.access('./some_file', os.F_OK) # File exists? Python 2.7
    os.access('./some_file', os.R_OK) # Ok to read? Python 2.7
    os.access('./some_file', os.W_OK) # Ok to write? Python 2.7
    os.access('./some_file', os.X_OK) # Ok to execute? Python 2.7
    os.access('./some_file', os.X_OK | os.W_OK) # Ok to execute or write? Python 2.7
     
    # join (creates operating system dependent paths)
    os.path.join('a', 'b', 'c')
    # 'a/b/c' on Unix/Linux
    # 'ac' on Windows
    os.path.normpath('a/b/c') # converts file separators
     
     
    # os.path: direcory and file names
    os.path.samefile('./some_file', '/home/some_file')  # True if those are the same
    os.path.dirname('./some_file')  # returns '.' (everythin but last component)
    os.path.basename('./some_file') # returns 'some_file' (only last component
    os.path.split('./some_file') # returns (dirname, basename) or ('.', 'some_file)
    os.path.splitext('./some_file.txt') # returns ('./some_file', '.txt')
    os.path.splitdrive('./some_file.txt') # returns ('', './some_file.txt')
    os.path.isabs('./some_file.txt') # returns False (not an absolute path)
    os.path.abspath('./some_file.txt')
     
     
    # create and delete files and directories
    os.mkdir('./test')  # create a new direcotory
    os.rmdir('./test')  # removes an empty direcotory
    os.removedirs('./test') # removes nested empty directories
    os.remove('file.txt')   # removes an individual file
    shutil.rmtree('./test') # removes directory (empty or not empty)
     
    os.rename('./dir_before', './renamed') # renames directory if destination doesn't exist
    shutil.move('./dir_before', './renamed') # renames directory always
     
    shutil.copytree('./orig', './copy') # copies a directory recursively
    shutil.copyfile('file', 'copy')     # copies a file
     
     
    # Getting files of particular type from directory
    files = [f for f in os.listdir(s_pdb_dir) if f.endswith(".txt")]
     
    # Copy and move
    shutil.copyfile("/path/to/file", "/path/to/new/file")
    shutil.copy("/path/to/file", "/path/to/directory")
    shutil.move("/path/to/file","/path/to/directory")
     
    # Check if file or directory exists
    os.path.exists("file or directory")
    os.path.isfile("file")
    os.path.isdir("directory")
     
    # Working directory and absolute path to files
    os.getcwd()
    os.path.abspath("file")
    

    参考:

    Python 删除文件夹

    def onerror(func, path, exc_info):
        """
        Error handler for ``shutil.rmtree``.
    
        If the error is due to an access error (read only file)
        it attempts to add write permission and then retries.
    
        If the error is for another reason it re-raises the error.
    
        Usage : ``shutil.rmtree(path, onerror=onerror)``
        """
        import stat
        if not os.access(path, os.W_OK):
            # Is the error an access error ?
            os.chmod(path, stat.S_IWUSR)
            func(path)
        else:
            raise
    

    参考:

    Python 切换目录

    执行完,返回之前目录

    import contextlib
    @contextlib.contextmanager
    def cdir(path):
        prev_cwd = os.getcwd()
        os.chdir(path)
        try:
            yield
        finally:
            os.chdir(prev_cwd)
    

    用法:

    with cdir(path):
        func()
    

    搜索指定目录下的文件

    将指定目录及其子目录下的文件搜索出来:

    def find_file(start_path, name):
        """
        search the files of name from the dir start_path,存放的是搜索文件的路径
        :param start_path: the search scope of dir
        :param name: the name of search file
        :return: set of files path
        """
        files_path = set()
        for rel_path, dirs, files in os.walk(start_path):
            # if name in files:
            for f in files:
                if name in f:
                    full_path = os.path.join(start_path, rel_path, f)
                    path = os.path.normpath(os.path.abspath(full_path))
                    files_path.add(path)
        return files_path
    

    只列出文件夹下的文件夹

    [ name for name in os.listdir(thedir) if os.path.isdir(os.path.join(thedir, name)) ]
    
    filter(os.path.isdir, os.listdir(os.getcwd()))
    

    Python Path相关问题

    os.path.split(r"C:fooarfile_name.txt")
    

    数据库

    MySQL 数据库

    db = MySQLdb.connect("localhost","your_username","your_password","your_dbname")
    cursor = db.cursor()
    sql = "select Column1,Column2 from Table1"
    cursor.execute(sql)
    results = cursor.fetchall()
     
    for row in results:
        print row[0]+row[1]
     
    db.close()
    

    参考:

    MongoDB

    uri="mongodb://admin:admin@xxx.xxx.xxx.xxx:27017,xxx.xxx.xxx.xxx:27018,xxx.xxx.xxx.xxx:27019/test"
    client=pymongo.MongoClient(uri,replicaSet='noah-cluster',readPreference='primaryPreferred')
    db=client.get_default_database()         
    decouple_history=db.rpm_decouple_release_history_info        
    pprint(decouple_history.find_one({'service_name':'test'}))        
    
  • 相关阅读:
    要使用springtest来进行单元测试 否则将无法注入 applicationContext.xml
    关键词的重要性
    发卡可以以交叉方式佩戴来增强可爱性
    红毛类型
    oracle学习总结4
    对springMVC的简单理解
    理解RESTful架构
    项目移植过程中报:“Project facet Java version 1.7 is not supported.” 错误
    svn服务器的搭建
    oracle学习总结3
  • 原文地址:https://www.cnblogs.com/michael-xiang/p/10465780.html
Copyright © 2020-2023  润新知