You are an experienced Codeforces user. Today you found out that during your activity on Codeforces you have made y submissions, out of which x have been successful. Thus, your current success rate on Codeforces is equal to x / y.
Your favorite rational number in the [0;1] range is p / q. Now you wonder: what is the smallest number of submissions you have to make if you want your success rate to be p / q?
The first line contains a single integer t (1 ≤ t ≤ 1000) — the number of test cases.
Each of the next t lines contains four integers x, y, p and q (0 ≤ x ≤ y ≤ 109; 0 ≤ p ≤ q ≤ 109; y > 0; q > 0).
It is guaranteed that p / q is an irreducible fraction.
Hacks. For hacks, an additional constraint of t ≤ 5 must be met.
For each test case, output a single integer equal to the smallest number of submissions you have to make if you want your success rate to be equal to your favorite rational number, or -1 if this is impossible to achieve.
4
3 10 1 2
7 14 3 8
20 70 2 7
5 6 1 1
4
10
0
-1
第一题第二题满满的恶意,看样例猜题意系列。
第三题题意没什么说的,简单讲一下我是怎么想的好了,p和q互质,最后的结果一定是(x+a)/(y+b)=p*k/q*k,即x+a=p*k,y+b=q*k.(可以a<=b)
想了一下最极限的情况x=999999999 y=999999999 p=1 q=1000000000,k最大也不超过1e9,所以1~1e9二分,找到第一个最小满足判断的k就行了
比赛时想偷下懒三组for循环暴力(按理来说复杂度够了),预测时过了也就没多想,结果忘记还有个多组测试的t<=1000,赛后果断TLE,哎,忧伤!
#include<cstdio> #include<cstdlib> #include<cstring> #include<string> #include<algorithm> #include<iostream> #include<queue> #include<map> #include<cmath> #include<set> #include<stack> #define ll long long #define max(x,y) (x)>(y)?(x):(y) #define min(x,y) (x)>(y)?(y):(x) #define cls(name,x) memset(name,x,sizeof(name)) using namespace std; const int inf=1<<28; const int maxn=1010; const int maxm=110; const int mod=1e9+7; const double pi=acos(-1.0); ll x,y,p,q; bool judge(int k) { if(k*p-x <= k*q-y&&k*p-x>=0&&k*q-y>=0) return true; return false; } int main() { //freopen("in.txt","r",stdin); int ncas; scanf("%d",&ncas); while(ncas--) { scanf("%I64d %I64d %I64d %I64d",&x,&y,&p,&q); if(x*q==p*y) {printf("0 ");continue;} ll l=1,r=1e9; if(!judge(r)) {printf("-1 ");continue;} while(l<r) { int mid=(l+r)/2; if(judge(mid)) r=mid; else l=mid+1; if(l==r) break; } printf("%I64d ",l*q-y); } return 0; }