• HDU-3473Minimum Sum


    Problem Description
    You are given N positive integers, denoted as x0, x1 ... xN-1. Then give you some intervals [l, r]. For each interval, you need to find a number x to make as small as possible!
     

    Input
    The first line is an integer T (T <= 10), indicating the number of test cases. For each test case, an integer N (1 <= N <= 100,000) comes first. Then comes N positive integers x (1 <= x <= 1,000, 000,000) in the next line. Finally, comes an integer Q (1 <= Q <= 100,000), indicting there are Q queries. Each query consists of two integers l, r (0 <= l <= r < N), meaning the interval you should deal with.

     

    Output
    For the k-th test case, first output “Case #k:” in a separate line. Then output Q lines, each line is the minimum value of . Output a blank line after every test case.
     

    Sample Input
    2 5 3 6 2 2 4 2 1 4 0 2 2 7 7 2 0 1 1 1
     

    Sample Output
    Case #1: 6 4 Case #2: 0 0
     

    Author
    standy
     

    Source
     

    Recommend
    zhengfeng   |   We have carefully selected several similar problems for you:  3474 1828 3397 3333 3472


    被杭电的输出坑了 好久。。。。

    printf lld 就WA 要I64d才行。。。。。真吭。!


    易得使绝对值和最小就是中位数,能够參考坐标上的点到两点间距离之和最小的原理。


    这道题让我对划分树的原理理解更加深刻了。

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <vector>
    #include <string>
    #include <algorithm>
    #include <queue>
    using namespace std;
    #define md(x, y) (((x)+(y))>>1)
    const int maxn = 100000+10;
    typedef long long LL;
    int n,m;
    int ls;
    int num[maxn];
    int seg[20][maxn];
    int lftnum[20][maxn];
    LL lfts[20][maxn];
    LL presum[maxn];
    LL lsum;
    void build(int L,int R,int dep){
        if(L==R)return;
        int mid = md(L,R);
        int key = num[mid];
        int lcnt = mid-L+1;
        for(int i = L; i <= R; i++){
            if(seg[dep][i] < key)
                lcnt--;
        }
        int lp = L,rp = mid+1;
        for(int i = L; i <= R; i++){
            if(i==L){
                lftnum[dep][i] = 0;
                lfts[dep][i] = 0;
            }else{
                lfts[dep][i] = lfts[dep][i-1];
                lftnum[dep][i] = lftnum[dep][i-1];
            }
            if(seg[dep][i] < key){
                lftnum[dep][i]++;
                lfts[dep][i] += seg[dep][i];
                seg[dep+1][lp++] = seg[dep][i];
            }
            else if(seg[dep][i] > key){
                seg[dep+1][rp++] = seg[dep][i];
            }
            else{
                if(lcnt>0){
                    lcnt--;
                    lftnum[dep][i]++;
                    lfts[dep][i] += seg[dep][i];
                    seg[dep+1][lp++] = seg[dep][i];
                }else{
                    seg[dep+1][rp++] = seg[dep][i];
                }
            }
        }
    
        build(L,mid,dep+1);
        build(mid+1,R,dep+1);
    }
    
    LL query(int L,int R,int ll,int rr,int dep,int k){
        if(ll == rr)
            return seg[dep][ll];
        int mid = md(ll,rr);
        int ncnt,ucnt;
        LL tsum = 0;
        if(L==ll){
            ncnt = 0;
            tsum = lfts[dep][R];
            ucnt = lftnum[dep][R]-ncnt;
        }else{
            ncnt = lftnum[dep][L-1];
            ucnt = lftnum[dep][R]-ncnt;
            tsum = lfts[dep][R]-lfts[dep][L-1];
        }
        if(ucnt >= k){
            L = ll + ncnt;
            R = ll + ncnt + ucnt-1;
            return query(L,R,ll,mid,dep+1,k);
        }else{
            int aa = L-ll-ncnt;
            int bb = R-L-ucnt+1;
            L = mid+aa+1;
            R = mid+aa+bb;
            ls += ucnt;
            lsum += tsum;
            return query(L,R,mid+1,rr,dep+1,k-ucnt);
        }
    }
    int main(){
    
        int ncase,T=1;
        cin >>ncase;
        while(ncase--){
            scanf("%d",&n);
            presum[0] = 0;
            for(int i = 1; i <= n; i++){
                scanf("%d",&num[i]);
                seg[0][i] = num[i];
                presum[i] = presum[i-1]+num[i];
            }
            sort(num+1,num+n+1);
            build(1,n,0);
            scanf("%d",&m);
            printf("Case #%d:
    ",T++);
            while(m--){
                int a,b,k;
                scanf("%d%d",&a,&b);
                ++a;++b;
                k = (b-a)/2+1;
                lsum = 0;
                ls = 0;
                int rs = 0;
                int t = query(a,b,1,n,0,k);
                LL rsum = presum[b]-presum[a-1]-t-lsum;
                rs = b-a-ls;
                LL ans = rsum-lsum+t*(ls-rs);
                printf("%I64d
    ",ans);
            }
            printf("
    ");
        }
        return 0;
    }
    


  • 相关阅读:
    C#获取远程客户端IP
    .NET 中的对象序列化
    架构师
    如何在删除并重新安装 IIS 之后修复 IIS 映射
    Web.config里设置upload文件大小限制的属性是什么来着?在哪个Section里?
    ASP.net security
    如何优化JavaScript脚本的性能
    关于session丢失原因的分析
    浅谈对象的序列化(Serialize)
    微软软件架构师培训
  • 原文地址:https://www.cnblogs.com/mfrbuaa/p/5280977.html
Copyright © 2020-2023  润新知