• SPOJ 11840. Sum of Squares with Segment Tree (线段树,区间更新)


    http://www.spoj.com/problems/SEGSQRSS/

    SPOJ Problem Set (classical)

    11840. Sum of Squares with Segment Tree

    Problem code: SEGSQRSS


    Segment trees are extremely useful.  In particular "Lazy Propagation" (i.e. see here, for example) allows one to compute sums over a range in O(lg(n)), and update ranges in O(lg(n)) as well.  In this problem you will compute something much harder:  

    The sum of squares over a range with range updates of 2 types:

    1) increment in a range

    2) set all numbers the same in a range.

    Input

    There will be T (T <= 25) test cases in the input file.  First line of the input contains two positive integers, N (N <= 100,000) and Q (Q <= 100,000)The next line contains N integers, each at most 1000.  Each of the next Qlines starts with a number, which indicates the type of operation:

    st nd  -- return the sum of the squares of the numbers with indices in [st, nd] {i.e., from st to nd inclusive} (1 <= st <= nd <= N).

    st nd x -- add "x" to all numbers with indices in [st, nd(1 <= st <= nd <= Nand -1,000 <= x <= 1,000).

    st nd x -- set all numbers with indices in [st, nd] to "x(1 <= st <= nd <= Nand -1,000 <= x <= 1,000).

     

    Output

    For each test case output the “Case <caseno>:” in the first line and from the second line output the sum of squares for each operation of type 2.  Intermediate overflow will not occur with proper use of 64-bit signed integer. 

    Example

    Input:

    2
    4 5
    1 2 3 4
    2 1 4
    0 3 4 1
    2 1 4
    1 3 4 1
    2 1 4
    1 1
    1
    2 1 1

    Output:
    

    Case 1:
    30
    7
    13
    Case 2:
    1

     

    Added by: Chen Xiaohong
    Date: 2012-07-11
    Time limit: 6s
    Source limit: 50000B
    Memory limit: 256MB
    Cluster: Pyramid (Intel Pentium III 733 MHz)
    Languages: All



    题意:

    有三种操作:将区间中的全部数置为x;将区间中的全部数加上x;求区间内全部数的平方和。

    分析:

    先考虑假设不须要求平方和,仅仅是求和,我们须要维护这些数据:addv-区间内的数共同加上的值;setv-区间内的数都置为的值(setv=INF表示不设置);sumv-区间内的数加上addv之前的值。

    但这题求的是平方和。似乎不是非常好维护。假设仅仅是set操作,还是非常好维护的,那么难点就在于add操作了。考虑例如以下等式:(x+v)^2=x^2+2xv+v^2,x是add操作之前的数,v是add的数。这是一个数的情况。那么一段区间内的数呢?

    显然有sum(xi^2)+(v^2)*length+2*sum(xi)*v。这样问题就迎刃而解了,仅仅要再维护一个区间的平方和即可,当set时直接改,add时加上(v^2)*length+2*sum(xi)*v即可。


    /*
     *
     * Author : fcbruce
     *
     * Time : Fri 03 Oct 2014 04:16:10 PM CST
     *
     */
    #include <cstdio>
    #include <iostream>
    #include <sstream>
    #include <cstdlib>
    #include <algorithm>
    #include <ctime>
    #include <cctype>
    #include <cmath>
    #include <string>
    #include <cstring>
    #include <stack>
    #include <queue>
    #include <list>
    #include <vector>
    #include <map>
    #include <set>
    #define sqr(x) ((x)*(x))
    #define LL long long
    #define itn int
    #define INF 0x3f3f3f3f
    #define PI 3.1415926535897932384626
    #define eps 1e-10
    
    #ifdef _WIN32
      #define lld "%I64d"
    #else
      #define lld "%lld"
    #endif
    
    #define maxm 
    #define maxn 100007
    
    using namespace std;
    
    int addv[maxn<<2],setv[maxn<<2];
    long long sumv[maxn<<2],sqrsumv[maxn<<2];
    
    inline void pushdown(int k,int l,int r)
    {
      int lc=k*2+1,rc=k*2+2,m=l+r>>1;
      addv[lc]+=addv[k];
      addv[rc]+=addv[k];
      addv[k]=0;
    
      if (setv[k]!=INF)
      {
        setv[lc]=setv[rc]=setv[k];
        sumv[lc]=(LL)setv[lc]*(m-l);sumv[rc]=(LL)setv[rc]*(r-m);
        sqrsumv[lc]=sqr((LL)setv[k]*(m-l));sqrsumv[rc]=sqr((LL)setv[rc])*(r-m);
        addv[lc]=addv[rc]=0;
        setv[k]=INF;
      }
    }
    
    inline void pushup(int k,int l,int r)
    {
      int lc=k*2+1,rc=k*2+2,m=l+r>>1;
    
      sumv[k]=sumv[lc]+sumv[rc]+(LL)addv[lc]*(m-l)+(LL)addv[rc]*(r-m);
      sqrsumv[k]=sqrsumv[lc]+sqrsumv[rc]+(LL)(r-l)*(addv[k])+2ll*sumv[k]*addv[k];
    }
    
    void build(int k,int l,int r)
    {
      addv[k]=0;
      setv[k]=INF;
      sumv[k]=sqrsumv[k]=0ll;
    
      if (r-l==1)
      {
        scanf("%d",&sumv[k]);
        sqrsumv[k]=sqr((LL)sumv[k]);
        return ;
      }
    
      build(k*2+1,l,l+r>>1);
      build(k*2+2,l+r>>1,r);
    
      pushup(k,l,r);
    }
    
    void update_add(int a,int b,int v,int k,int l,int r)
    {
      if (b<=l || r<=a) return ;
      if (a<=l && r<=b)
      {
        addv[k]+=v;
        sqrsumv[k]+=sqr((LL)v)*(r-l)+2ll*v*sumv[k];
        return ;
      }
    
      pushdown(k,l,r);
    
      update_add(a,b,v,k*2+1,l,l+r>>1);
      update_add(a,b,v,k*2+2,l+r>>1,r);
    
      pushup(k,l,r);
    }
    
    void update_set(int a,int b,int v,int k,int l,int r)
    {
      if (b<=l || r<=a) return ;
      if (a<=l && r<=b)
      {
        addv[k]=0;
        setv[k]=v;
        sumv[k]=(LL)v*(r-l);
        sqrsumv[k]=sqr((LL)v)*(r-l);
        return ;
      }
    
      pushdown(k,l,r);
    
      update_set(a,b,v,k*2+1,l,l+r>>1);
      update_set(a,b,v,k*2+2,l+r>>1,r);
    
      pushup(k,l,r);
    }
    
    long long query(int a,int b,int k,int l,int r)
    {
      if (b<=l || r<=a) return 0ll;
      if (a<=l && r<=b) return sqrsumv[k];
      
      pushdown(k,l,r);
    
      return query(a,b,k*2+1,l,l+r>>1)+query(a,b,k*2+2,l+r>>1,r);
    }
    
    int main()
    {
    #ifdef FCBRUCE
      freopen("/home/fcbruce/code/t","r",stdin);
    #endif // FCBRUCE
    
      int T_T,__=0;
      scanf("%d",&T_T);
    
      while (T_T--)
      {
        int n,m;
        scanf("%d%d",&n,&m);
        
        build(0,0,n);
    
        printf("Case %d:
    ",++__);
    
        int op,a,b,v;
        while (m--)
        {
          scanf("%d",&op);
    
          switch (op)
          {
            case 0:
              scanf("%d%d%d",&a,&b,&v);
              a--;
              update_set(a,b,v,0,0,n);
              break;
            case 1:
              scanf("%d%d%d",&a,&b,&v);
              a--;
              update_add(a,b,v,0,0,n);
              break;
            case 2:
              scanf("%d %d",&a,&b);
              a--;
              printf(lld "
    ",query(a,b,0,0,n));
              break;
          }
        }
      }
    
    
      return 0;
    }
    


  • 相关阅读:
    ASP.NET Core – Web API Versioning
    ASP.NET Core – Handle Error on Web API
    ASP.NET Core – MVC vs Razor Page
    EF Core – Library use EF
    ASP.NET Core – Filter
    GeoServer地图开发解决方案
    参透人生的一道计算题
    iscroll4 精讲
    各种分割线Html代码
    iBatis入门教程
  • 原文地址:https://www.cnblogs.com/mfrbuaa/p/5163223.html
Copyright © 2020-2023  润新知