//少说话。多做事,下面是我验证过没有问题的串口发送接受数据 //使用MCU stm8s105c6 UART2 //初始化时调用: GPIO_DeInit(GPIOD); /* Configure PD5/6 */ GPIO_Init(GPIOD, GPIO_PIN_5, GPIO_MODE_IN_PU_NO_IT);//发送数据IO GPIO_Init(GPIOD, GPIO_PIN_6, GPIO_MODE_IN_FL_NO_IT);//接受数据IO UART2_DeInit(); UART2_Init(2400,UART2_WORDLENGTH_8D,UART2_STOPBITS_1,UART2_PARITY_NO, UART2_SYNCMODE_CLOCK_DISABLE, UART2_MODE_TX_ENABLE|UART2_MODE_RX_ENABLE); //波特率 2400 8位数据 //1个停止位 没有奇偶校验 关闭SCK 同意串口接受和发送 UART2_Cmd(ENABLE);//启用串口 UART2_ITConfig(UART2_IT_RXNE_OR,ENABLE);//同意接受中断 //操作串口(发送接受数据)时调用: if(UART2_GetFlagStatus(UART2_FLAG_TC)) {//当前没有在发数据,能够发数据 UART2_SendData8(Uart2TexData); UART2_ClearFlag(UART2_FLAG_TC); } UART2_ClearITPendingBit(UART2_FLAG_RXNE);//清中断标志位 Uart2RecData = UART2_ReceiveData8();//接受中断数据//后面两句须要发在 串口接受中断中 void UART2_DeInit(void) { u8 dummy = 0; /*< Clear the Idle Line Detected bit in the status rerister by a read to the UART2_SR register followed by a Read to the UART2_DR register */ dummy = UART2->SR; dummy = UART2->DR; UART2->BRR2 = UART2_BRR2_RESET_VALUE; /*< Set UART2_BRR2 to reset value 0x00 */ UART2->BRR1 = UART2_BRR1_RESET_VALUE; /*< Set UART2_BRR1 to reset value 0x00 */ UART2->CR1 = UART2_CR1_RESET_VALUE; /*< Set UART2_CR1 to reset value 0x00 */ UART2->CR2 = UART2_CR2_RESET_VALUE; /*< Set UART2_CR2 to reset value 0x00 */ UART2->CR3 = UART2_CR3_RESET_VALUE; /*< Set UART2_CR3 to reset value 0x00 */ UART2->CR4 = UART2_CR4_RESET_VALUE; /*< Set UART2_CR4 to reset value 0x00 */ UART2->CR5 = UART2_CR5_RESET_VALUE; /*< Set UART2_CR5 to reset value 0x00 */ UART2->CR6 = UART2_CR6_RESET_VALUE; /*< Set UART2_CR6 to reset value 0x00 */ } void UART2_Init(u32 BaudRate, UART2_WordLength_TypeDef WordLength, UART2_StopBits_TypeDef StopBits, UART2_Parity_TypeDef Parity, UART2_SyncMode_TypeDef SyncMode, UART2_Mode_TypeDef Mode) { u8 BRR2_1, BRR2_2 = 0; u32 BaudRate_Mantissa, BaudRate_Mantissa100 = 0; /* assert_param: BaudRate value should be <= 625000 bps */ assert_param(IS_UART2_BAUDRATE_OK(BaudRate)); assert_param(IS_UART2_WORDLENGTH_OK(WordLength)); assert_param(IS_UART2_STOPBITS_OK(StopBits)); assert_param(IS_UART2_PARITY_OK(Parity)); /* assert_param: UART2_Mode value should exclude values such as UART2_ModeTx_Enable|UART2_ModeTx_Disable */ assert_param(IS_UART2_MODE_OK((u8)Mode)); /* assert_param: UART2_SyncMode value should exclude values such as UART2_CLOCK_ENABLE|UART2_CLOCK_DISABLE */ assert_param(IS_UART2_SYNCMODE_OK((u8)SyncMode)); UART2->CR1 &= (u8)(~UART2_CR1_M); /**< Clear the word length bit */ UART2->CR1 |= (u8)WordLength; /**< Set the word length bit according to UART2_WordLength value */ UART2->CR3 &= (u8)(~UART2_CR3_STOP); /**< Clear the STOP bits */ UART2->CR3 |= (u8)StopBits; /**< Set the STOP bits number according to UART2_StopBits value */ UART2->CR1 &= (u8)(~(UART2_CR1_PCEN | UART2_CR1_PS )); /**< Clear the Parity Control bit */ UART2->CR1 |= (u8)Parity; /**< Set the Parity Control bit to UART2_Parity value */ UART2->BRR1 &= (u8)(~UART2_BRR1_DIVM); /**< Clear the LSB mantissa of UARTDIV */ UART2->BRR2 &= (u8)(~UART2_BRR2_DIVM); /**< Clear the MSB mantissa of UARTDIV */ UART2->BRR2 &= (u8)(~UART2_BRR2_DIVF); /**< Clear the Fraction bits of UARTDIV */ /**< Set the UART2 BaudRates in BRR1 and BRR2 registers according to UART2_BaudRate value */ BaudRate_Mantissa = ((u32)CLK_GetClockFreq() / (BaudRate << 4)); BaudRate_Mantissa100 = (((u32)CLK_GetClockFreq() * 100) / (BaudRate << 4)); /**< The fraction and MSB mantissa should be loaded in one step in the BRR2 register*/ BRR2_1 = (u8)((u8)(((BaudRate_Mantissa100 - (BaudRate_Mantissa * 100)) << 4) / 100) & (u8)0x0F); /**< Set the fraction of UARTDIV */ BRR2_2 = (u8)((BaudRate_Mantissa >> 4) & (u8)0xF0); UART2->BRR2 = (u8)(BRR2_1 | BRR2_2); UART2->BRR1 = (u8)BaudRate_Mantissa; /**< Set the LSB mantissa of UARTDIV */ UART2->CR2 &= (u8)~(UART2_CR2_TEN | UART2_CR2_REN); /**< Disable the Transmitter and Receiver before seting the LBCL, CPOL and CPHA bits */ UART2->CR3 &= (u8)~(UART2_CR3_CPOL | UART2_CR3_CPHA | UART2_CR3_LBCL); /**< Clear the Clock Polarity, lock Phase, Last Bit Clock pulse */ UART2->CR3 |= (u8)((u8)SyncMode & (u8)(UART2_CR3_CPOL | UART2_CR3_CPHA | UART2_CR3_LBCL)); /**< Set the Clock Polarity, lock Phase, Last Bit Clock pulse */ if ((u8)Mode & (u8)UART2_MODE_TX_ENABLE) { UART2->CR2 |= (u8)UART2_CR2_TEN; /**< Set the Transmitter Enable bit */ } else { UART2->CR2 &= (u8)(~UART2_CR2_TEN); /**< Clear the Transmitter Disable bit */ } if ((u8)Mode & (u8)UART2_MODE_RX_ENABLE) { UART2->CR2 |= (u8)UART2_CR2_REN; /**< Set the Receiver Enable bit */ } else { UART2->CR2 &= (u8)(~UART2_CR2_REN); /**< Clear the Receiver Disable bit */ } /**< Set the Clock Enable bit, lock Polarity, lock Phase and Last Bit Clock pulse bits according to UART2_Mode value */ if ((u8)SyncMode&(u8)UART2_SYNCMODE_CLOCK_DISABLE) { UART2->CR3 &= (u8)(~UART2_CR3_CKEN); /**< Clear the Clock Enable bit */ /**< configure in Push Pull or Open Drain mode the Tx I/O line by setting the correct I/O Port register according the product package and line configuration*/ } else { UART2->CR3 |= (u8)((u8)SyncMode & UART2_CR3_CKEN); } } void UART2_Cmd(FunctionalState NewState) { if (NewState != DISABLE) { UART2->CR1 &= (u8)(~UART2_CR1_UARTD); /**< UART2 Enable */ } else { UART2->CR1 |= UART2_CR1_UARTD; /**< UART2 Disable (for low power consumption) */ } } void UART2_ITConfig(UART2_IT_TypeDef UART2_IT, FunctionalState NewState) { u8 uartreg, itpos = 0x00; assert_param(IS_UART2_CONFIG_IT_OK(UART2_IT)); assert_param(IS_FUNCTIONALSTATE_OK(NewState)); /* Get the UART2 register index */ uartreg = (u8)(UART2_IT >> 0x08); /* Get the UART2 IT index */ itpos = (u8)((u8)1 << (u8)((u8)UART2_IT & (u8)0x0F)); if (NewState != DISABLE) { /**< Enable the Interrupt bits according to UART2_IT mask */ if (uartreg == 0x01) { UART2->CR1 |= itpos; } else if (uartreg == 0x02) { UART2->CR2 |= itpos; } else if (uartreg == 0x03) { UART2->CR4 |= itpos; } else { UART2->CR6 |= itpos; } } else { /**< Disable the interrupt bits according to UART2_IT mask */ if (uartreg == 0x01) { UART2->CR1 &= (u8)(~itpos); } else if (uartreg == 0x02) { UART2->CR2 &= (u8)(~itpos); } else if (uartreg == 0x03) { UART2->CR4 &= (u8)(~itpos); } else { UART2->CR6 &= (u8)(~itpos); } } } u8 UART2_ReceiveData8(void) { return ((u8)UART2->DR); } void UART2_SendData8(u8 Data) { /* Transmit Data */ UART2->DR = Data; } FlagStatus UART2_GetFlagStatus(UART2_Flag_TypeDef UART2_FLAG) { FlagStatus status = RESET; /* Check parameters */ assert_param(IS_UART2_FLAG_OK(UART2_FLAG)); /* Check the status of the specified UART2 flag*/ if (UART2_FLAG == UART2_FLAG_LBDF) { if ((UART2->CR4 & (u8)UART2_FLAG) != (u8)0x00) { /* UART2_FLAG is set*/ status = SET; } else { /* UART2_FLAG is reset*/ status = RESET; } } else if (UART2_FLAG == UART2_FLAG_SBK) { if ((UART2->CR2 & (u8)UART2_FLAG) != (u8)0x00) { /* UART2_FLAG is set*/ status = SET; } else { /* UART2_FLAG is reset*/ status = RESET; } } else if ((UART2_FLAG == UART2_FLAG_LHDF) || (UART2_FLAG == UART2_FLAG_LSF)) { if ((UART2->CR6 & (u8)UART2_FLAG) != (u8)0x00) { /* UART2_FLAG is set*/ status = SET; } else { /* UART2_FLAG is reset*/ status = RESET; } } else { if ((UART2->SR & (u8)UART2_FLAG) != (u8)0x00) { /* UART2_FLAG is set*/ status = SET; } else { /* UART2_FLAG is reset*/ status = RESET; } } /* Return the UART2_FLAG status*/ return status; } void UART2_ClearFlag(UART2_Flag_TypeDef UART2_FLAG) { assert_param(IS_UART2_CLEAR_FLAG_OK(UART2_FLAG)); /*< Clear the Receive Register Not Empty flag */ if (UART2_FLAG == UART2_FLAG_RXNE) { UART2->SR = (u8)~(UART2_SR_RXNE); } /*< Clear the LIN Break Detection flag */ else if (UART2_FLAG == UART2_FLAG_LBDF) { UART2->CR4 &= (u8)(~UART2_CR4_LBDF); } /*< Clear the LIN Header Detection Flag */ else if (UART2_FLAG == UART2_FLAG_LHDF) { UART2->CR6 &= (u8)(~UART2_CR6_LHDF); } /*< Clear the LIN Synch Field flag */ else { UART2->CR6 &= (u8)(~UART2_CR6_LSF); } }