• 使用nodeitk进行对象识别


    前言

    东莞,晴,29至27度。忙了一天,最终能够写写东西了。今天继续昨天的话题,我们在昨天的例了基础上完好,通过匹配关键点求出映射从而找到场景中的已知对象。

    目标

    本文你将学习

    1. 採用nodeitk的findHomography和perspectiveTransform进行对象识别。
    2. 此外,样例基本包括nodeitk的一些基本数据结构的使用:NodeOpenCVMat, NodeOpenCVKeyPoint, NodeOpenCVPoint
    3. 上述主要的数据结构在nodeitk版本号稳定后将会在使用手冊中说明
    代码

    var node_itk = require('./node-itk');
    var img_object = node_itk.cv.imread( "./images/box.png", node_itk.cv.CV_LOAD_IMAGE_GRAYSCALE );
    var img_scene = node_itk.cv.imread( "./images/box_in_scene.png", node_itk.cv.CV_LOAD_IMAGE_GRAYSCALE );
    minHessian = 400
    detector = new node_itk.cv.NodeOpenCVFeatureDetector("SURF")
    detector.Set("hessianThreshold", minHessian)
    keypoints_object = detector.Detect( img_object );
    keypoints_scene = detector.Detect( img_scene );
    extractor = new node_itk.cv.NodeOpenCVDescriptorExtractor("SURF");
    descriptors_object = extractor.Compute(img_object, keypoints_object)
    descriptors_scene = extractor.Compute(img_scene, keypoints_scene)
    matcher = new node_itk.cv.NodeOpenCVDescriptorMatcher("FlannBased");
    matches = matcher.Match(descriptors_object, descriptors_scene);
    max_dist=0
    min_dist=100
    for (var i = 0; i < descriptors_object.Rows(); i++ ) {
    	dist = matches[i].GetDistance();
    	if (dist < min_dist) min_dist = dist;
    	if (dist > max_dist) max_dist = dist;
    };
    console.log("-- Max dist : " + max_dist + "
    ")
    console.log("-- Min dist : " + min_dist + "
    ")
    var good_matches = [];
    for( var i = 0; i < descriptors_object.Rows(); i++ ){ 
    	if( matches[i].GetDistance() <= 3*min_dist )
    	{ good_matches.push( matches[i] ); }
    }
    img_matches = node_itk.cv.DrawMatches(img_object, keypoints_object, img_scene, keypoints_scene, good_matches);
    var obj=[], scene=[];
    for (var i = 0; i < good_matches.length; i++) {
    	obj.push( keypoints_object[good_matches[i].GetQueryIdx()].PT() )
    	scene.push( keypoints_scene[good_matches[i].GetTrainIdx()].PT() )
    };
    
    H = node_itk.cv.FindHomography( obj, scene, node_itk.cv.CV_RANSAC );
    
    obj_corners = []
    obj_corners[0] = new node_itk.cv.NodeOpenCVPoint("Point2d", [0,0])
    obj_corners[1] = new node_itk.cv.NodeOpenCVPoint("Point2d", [img_object.Cols(),0])
    obj_corners[2] = new node_itk.cv.NodeOpenCVPoint("Point2d", [img_object.Cols(),img_object.Rows()])
    obj_corners[3] = new node_itk.cv.NodeOpenCVPoint("Point2d", [0,img_object.Rows()])
    
    tmp = new node_itk.cv.NodeOpenCVPoint("Point2d", [img_object.Cols(),0]);
    color = new node_itk.cv.NodeOpenCVScalar("Scalar", [0,255,0]);
    scene_corners = node_itk.cv.PerspectiveTransform(obj_corners, H.res);
    node_itk.cv.Line(img_matches, scene_corners[0].Add(tmp), scene_corners[1].Add(tmp), color, 2)
    node_itk.cv.Line(img_matches, scene_corners[1].Add(tmp), scene_corners[2].Add(tmp), color, 2)
    node_itk.cv.Line(img_matches, scene_corners[2].Add(tmp), scene_corners[3].Add(tmp), color, 2)
    node_itk.cv.Line(img_matches, scene_corners[3].Add(tmp), scene_corners[0].Add(tmp), color, 2)
    node_itk.cv.NamedWindow( "Good Matches & Object detection", node_itk.cv.CV_WINDOW_AUTOSIZE );
    node_itk.cv.imshow( "Good Matches & Object detection", img_matches );
    node_itk.cv.WaitKey ( 0 );

    结果


    小结

    本文是昨天话题的深化,代码依旧比較简洁。这是nodeitk遵循的原则:以简单的方式高速实现图像处理应用。喜欢的朋友就点踩,想说点东西的就评论吧!^_^ 待续

  • 相关阅读:
    Ubuntu下Nginx安装
    vi基本状态
    07. 背景图片距离
    06. 用css实现三角形
    Leetcode刷题 (二)
    Leetcode刷题 (一)
    目标检测中的AP计算
    python 引用(import)文件夹下的py文件
    git 上传和克隆文件
    Windows系统下Pytorch与python版本不匹配导致模块包导入错误
  • 原文地址:https://www.cnblogs.com/mfrbuaa/p/4173230.html
Copyright © 2020-2023  润新知